提交 a711992a 编写于 作者: S syyxsxx

add openvino supported

上级 fa6b0730
......@@ -8,7 +8,9 @@ SET(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
SET(OPENVINO_DIR "" CACHE PATH "Location of libraries")
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
SET(GFLAGS_DIR "" CACHE PATH "Location of libraries")
SET(GLOG_DIR "" CACHE PATH "Location of libraries")
SET(NGRAPH_LIB "" CACHE PATH "Location of libraries")
SET(ARCH "" CACHE PATH "Location of libraries")
include(cmake/yaml-cpp.cmake)
......@@ -27,6 +29,12 @@ macro(safe_set_static_flag)
endforeach(flag_var)
endmacro()
if(NOT WIN32)
if (NOT DEFINED ARCH OR ${ARCH} STREQUAL "")
message(FATAL_ERROR "please set ARCH with -DARCH=x86 OR armv7")
endif()
endif()
if (NOT DEFINED OPENVINO_DIR OR ${OPENVINO_DIR} STREQUAL "")
message(FATAL_ERROR "please set OPENVINO_DIR with -DOPENVINO_DIR=/path/influence_engine")
endif()
......@@ -39,19 +47,32 @@ if (NOT DEFINED GFLAGS_DIR OR ${GFLAGS_DIR} STREQUAL "")
message(FATAL_ERROR "please set GFLAGS_DIR with -DGFLAGS_DIR=/path/gflags")
endif()
if (NOT DEFINED GLOG_DIR OR ${GLOG_DIR} STREQUAL "")
message(FATAL_ERROR "please set GLOG_DIR with -DLOG_DIR=/path/glog")
endif()
if (NOT DEFINED NGRAPH_LIB OR ${NGRAPH_LIB} STREQUAL "")
message(FATAL_ERROR "please set NGRAPH_DIR with -DNGRAPH_DIR=/path/ngraph")
endif()
include_directories("${OPENVINO_DIR}")
link_directories("${OPENVINO_DIR}/lib")
include_directories("${OPENVINO_DIR}/include")
link_directories("${OPENVINO_DIR}/external/tbb/lib")
include_directories("${OPENVINO_DIR}/external/tbb/include/tbb")
link_directories("${OPENVINO_DIR}/lib")
link_directories("${OPENVINO_DIR}/external/tbb/lib")
if(WIN32)
link_directories("${OPENVINO_DIR}/lib/intel64/Release")
link_directories("${OPENVINO_DIR}/bin/intel64/Release")
endif()
link_directories("${GFLAGS_DIR}/lib")
include_directories("${GFLAGS_DIR}/include")
link_directories("${GLOG_DIR}/lib")
include_directories("${GLOG_DIR}/include")
link_directories("${NGRAPH_LIB}")
link_directories("${NGRAPH_LIB}/lib")
......@@ -79,14 +100,29 @@ else()
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
if(WITH_STATIC_LIB)
if(WIN32)
set(DEPS ${OPENVINO_DIR}/lib/intel64/Release/inference_engine${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_DIR}/lib/intel64/Release/inference_engine_legacy${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
if (ARCH STREQUAL "armv7")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=armv7-a")
if(WITH_STATIC_LIB)
set(DEPS ${OPENVINO_DIR}/lib/armv7l/libinference_engine${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_DIR}/lib/armv7l/libinference_engine_legacy${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS ${OPENVINO_DIR}/lib/armv7l/libinference_engine${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_DIR}/lib/armv7l/libinference_engine_legacy${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
else()
if(WITH_STATIC_LIB)
set(DEPS ${OPENVINO_DIR}/lib/intel64/libinference_engine${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_DIR}/lib/intel64/libinference_engine_legacy${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
else()
set(DEPS ${OPENVINO_DIR}/lib/intel64/libinference_engine${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_DIR}/lib/intel64/libinference_engine_legacy${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
endif()
endif()
endif(WIN32)
if (NOT WIN32)
set(DEPS ${DEPS}
......@@ -94,7 +130,7 @@ if (NOT WIN32)
)
else()
set(DEPS ${DEPS}
glog gflags_static libprotobuf zlibstatic xxhash libyaml-cppmt)
glog gflags_static libyaml-cppmt)
set(DEPS ${DEPS} libcmt shlwapi)
endif(NOT WIN32)
......@@ -105,7 +141,14 @@ if (NOT WIN32)
endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
add_executable(classifier src/classifier.cpp src/transforms.cpp src/paddlex.cpp)
add_executable(classifier demo/classifier.cpp src/transforms.cpp src/paddlex.cpp)
ADD_DEPENDENCIES(classifier ext-yaml-cpp)
target_link_libraries(classifier ${DEPS})
add_executable(segmenter demo/segmenter.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp)
ADD_DEPENDENCIES(segmenter ext-yaml-cpp)
target_link_libraries(segmenter ${DEPS})
add_executable(detector demo/detector.cpp src/transforms.cpp src/paddlex.cpp src/visualize.cpp)
ADD_DEPENDENCIES(detector ext-yaml-cpp)
target_link_libraries(detector ${DEPS})
......@@ -13,12 +13,32 @@
"variables": [
{
"name": "OPENCV_DIR",
"value": "C:/projects/opencv",
"value": "/path/to/opencv",
"type": "PATH"
},
{
"name": "OPENVINO_LIB",
"value": "C:/projetcs/inference_engine",
"name": "OPENVINO_DIR",
"value": "C:/Program Files (x86)/IntelSWTools/openvino/deployment_tools/inference_engine",
"type": "PATH"
},
{
"name": "NGRAPH_LIB",
"value": "C:/Program Files (x86)/IntelSWTools/openvino/deployment_tools/ngraph/lib",
"type": "PATH"
},
{
"name": "GFLAGS_DIR",
"value": "/path/to/gflags",
"type": "PATH"
},
{
"name": "WITH_STATIC_LIB",
"value": "True",
"type": "BOOL"
},
{
"name": "GLOG_DIR",
"value": "/path/to/glog",
"type": "PATH"
}
]
......
find_package(Git REQUIRED)
include(ExternalProject)
......
......@@ -22,7 +22,7 @@
#include "include/paddlex/paddlex.h"
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_string(cfg_dir, "", "Path of inference model");
DEFINE_string(cfg_dir, "", "Path of PaddelX model yml file");
DEFINE_string(device, "CPU", "Device name");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
......@@ -62,7 +62,8 @@ int main(int argc, char** argv) {
model.predict(im, &result);
std::cout << "Predict label: " << result.category
<< ", label_id:" << result.category_id
<< ", score: " << result.score << std::endl;
<< ", score: " << result.score
<< ", num_img: " << model.count_num_ << std::endl;
}
} else {
PaddleX::ClsResult result;
......
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
using namespace std::chrono; // NOLINT
DEFINE_string(model_dir, "", "Path of openvino model xml file");
DEFINE_string(cfg_dir, "", "Path of PaddleX model yaml file");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
DEFINE_string(device, "CPU", "Device name");
DEFINE_string(save_dir, "", "Path to save visualized image");
DEFINE_int32(batch_size, 1, "Batch size of infering");
DEFINE_double(threshold,
0.5,
"The minimum scores of target boxes which are shown");
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
std::cerr << "--model_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_cfg_dir == "") {
std::cerr << "--cfg_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_image == "" & FLAGS_image_list == "") {
std::cerr << "--image or --image_list need to be defined" << std::endl;
return -1;
}
//
PaddleX::Model model;
model.Init(FLAGS_model_dir, FLAGS_cfg_dir, FLAGS_device);
int imgs = 1;
auto colormap = PaddleX::GenerateColorMap(model.labels.size());
// 进行预测
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
if(!inf){
std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
return -1;
}
std::string image_path;
while (getline(inf, image_path)) {
PaddleX::DetResult result;
cv::Mat im = cv::imread(image_path, 1);
model.predict(im, &result);
if(FLAGS_save_dir != ""){
cv::Mat vis_img =
PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
std::cout << "Visualized output saved as " << save_path << std::endl;
}
}
}else {
PaddleX::DetResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(im, &result);
for (int i = 0; i < result.boxes.size(); ++i) {
std::cout << "image file: " << FLAGS_image << std::endl;
std::cout << ", predict label: " << result.boxes[i].category
<< ", label_id:" << result.boxes[i].category_id
<< ", score: " << result.boxes[i].score
<< ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0]
<< ", " << result.boxes[i].coordinate[1] << ", "
<< result.boxes[i].coordinate[2] << ", "
<< result.boxes[i].coordinate[3] << ")" << std::endl;
}
if(FLAGS_save_dir != ""){
// 可视化
cv::Mat vis_img =
PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
result.clear();
std::cout << "Visualized output saved as " << save_path << std::endl;
}
}
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
DEFINE_string(model_dir, "", "Path of openvino model xml file");
DEFINE_string(cfg_dir, "", "Path of PaddleX model yaml file");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
DEFINE_string(device, "CPU", "Device name");
DEFINE_string(save_dir, "", "Path to save visualized image");
DEFINE_int32(batch_size, 1, "Batch size of infering");
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
std::cerr << "--model_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_cfg_dir == "") {
std::cerr << "--cfg_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_image == "" & FLAGS_image_list == "") {
std::cerr << "--image or --image_list need to be defined" << std::endl;
return -1;
}
//
std::cout << "init start" << std::endl;
PaddleX::Model model;
model.Init(FLAGS_model_dir, FLAGS_cfg_dir, FLAGS_device);
std::cout << "init done" << std::endl;
int imgs = 1;
auto colormap = PaddleX::GenerateColorMap(model.labels.size());
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
if (!inf) {
std::cerr << "Fail to open file " << FLAGS_image_list <<std::endl;
return -1;
}
std::string image_path;
model.total_time_ = 0.0f;
model.count_num_ = 0;
while (getline(inf, image_path)) {
PaddleX::SegResult result;
cv::Mat im = cv::imread(image_path, 1);
model.predict(im, &result);
if(FLAGS_save_dir != ""){
cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels, colormap);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, image_path);
cv::imwrite(save_path, vis_img);
std::cout << "Visualized output saved as " << save_path << std::endl;
}
}
}else{
PaddleX::SegResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
std::cout << "predict start" << std::endl;
model.predict(im, &result);
std::cout << "predict done" << std::endl;
if(FLAGS_save_dir != ""){
cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels, colormap);
std::string save_path =
PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
cv::imwrite(save_path, vis_img);
std::cout << "Visualized` output saved as " << save_path << std::endl;
}
result.clear();
}
return 0;
}
文件模式从 100644 更改为 100755
......@@ -17,6 +17,7 @@
#include <functional>
#include <iostream>
#include <numeric>
#include <chrono>
#include "yaml-cpp/yaml.h"
......@@ -48,15 +49,20 @@ class Model {
bool load_config(const std::string& model_dir);
bool preprocess(cv::Mat* input_im);
bool preprocess(cv::Mat* input_im, ImageBlob* inputs);
bool predict(const cv::Mat& im, ClsResult* result);
bool predict(const cv::Mat& im, DetResult* result);
bool predict(const cv::Mat& im, SegResult* result);
std::string type;
std::string name;
std::vector<std::string> labels;
std::map<int, std::string> labels;
Transforms transforms_;
Blob::Ptr inputs_;
ImageBlob inputs_;
Blob::Ptr output_;
CNNNetwork network_;
ExecutableNetwork executable_network_;
......
......@@ -61,7 +61,7 @@ class DetResult : public BaseResult {
class SegResult : public BaseResult {
public:
Mask<int64_t> label_map;
Mask<int> label_map;
Mask<float> score_map;
void clear() {
label_map.clear();
......
......@@ -31,11 +31,40 @@ using namespace InferenceEngine;
namespace PaddleX {
/*
* @brief
* This class represents object for storing all preprocessed data
* */
class ImageBlob {
public:
// Original image height and width
//std::vector<int> ori_im_size_ = std::vector<int>(2);
Blob::Ptr ori_im_size_;
// Newest image height and width after process
std::vector<int> new_im_size_ = std::vector<int>(2);
// Image height and width before resize
std::vector<std::vector<int>> im_size_before_resize_;
// Reshape order
std::vector<std::string> reshape_order_;
// Resize scale
float scale = 1.0;
// Buffer for image data after preprocessing
Blob::Ptr blob;
void clear() {
im_size_before_resize_.clear();
reshape_order_.clear();
}
};
// Abstraction of preprocessing opration class
class Transform {
public:
virtual void Init(const YAML::Node& item) = 0;
virtual bool Run(cv::Mat* im) = 0;
virtual bool Run(cv::Mat* im, ImageBlob* data) = 0;
};
class Normalize : public Transform {
......@@ -45,7 +74,7 @@ class Normalize : public Transform {
std_ = item["std"].as<std::vector<float>>();
}
virtual bool Run(cv::Mat* im);
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<float> mean_;
......@@ -62,7 +91,7 @@ class ResizeByShort : public Transform {
max_size_ = -1;
}
};
virtual bool Run(cv::Mat* im);
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
float GenerateScale(const cv::Mat& im);
......@@ -70,6 +99,55 @@ class ResizeByShort : public Transform {
int max_size_;
};
/*
* @brief
* This class execute resize by long operation on image matrix. At first, it resizes
* the long side of image matrix to specified length. Accordingly, the short side
* will be resized in the same proportion.
* */
class ResizeByLong : public Transform {
public:
virtual void Init(const YAML::Node& item) {
long_size_ = item["long_size"].as<int>();
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int long_size_;
};
/*
* @brief
* This class execute resize operation on image matrix. It resizes width and height
* to specified length.
* */
class Resize : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["interp"].IsDefined()) {
interp_ = item["interp"].as<std::string>();
}
if (item["target_size"].IsScalar()) {
height_ = item["target_size"].as<int>();
width_ = item["target_size"].as<int>();
} else if (item["target_size"].IsSequence()) {
std::vector<int> target_size = item["target_size"].as<std::vector<int>>();
width_ = target_size[0];
height_ = target_size[1];
}
if (height_ <= 0 || width_ <= 0) {
std::cerr << "[Resize] target_size should greater than 0" << std::endl;
exit(-1);
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int height_;
int width_;
std::string interp_;
};
class CenterCrop : public Transform {
public:
......@@ -83,22 +161,66 @@ class CenterCrop : public Transform {
height_ = crop_size[1];
}
}
virtual bool Run(cv::Mat* im);
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int height_;
int width_;
};
/*
* @brief
* This class execute padding operation on image matrix. It makes border on edge
* of image matrix.
* */
class Padding : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["coarsest_stride"].IsDefined()) {
coarsest_stride_ = item["coarsest_stride"].as<int>();
if (coarsest_stride_ < 1) {
std::cerr << "[Padding] coarest_stride should greater than 0"
<< std::endl;
exit(-1);
}
}
if (item["target_size"].IsDefined()) {
if (item["target_size"].IsScalar()) {
width_ = item["target_size"].as<int>();
height_ = item["target_size"].as<int>();
} else if (item["target_size"].IsSequence()) {
width_ = item["target_size"].as<std::vector<int>>()[0];
height_ = item["target_size"].as<std::vector<int>>()[1];
}
}
if (item["im_padding_value"].IsDefined()) {
im_value_ = item["im_padding_value"].as<std::vector<float>>();
}
else {
im_value_ = {0, 0, 0};
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int coarsest_stride_ = -1;
int width_ = 0;
int height_ = 0;
std::vector<float> im_value_;
};
class Transforms {
public:
void Init(const YAML::Node& node, bool to_rgb = true);
void Init(const YAML::Node& node, std::string type, bool to_rgb = true);
std::shared_ptr<Transform> CreateTransform(const std::string& name);
bool Run(cv::Mat* im, Blob::Ptr blob);
bool Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<std::shared_ptr<Transform>> transforms_;
bool to_rgb_ = true;
std::string type_;
};
} // namespace PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <map>
#include <vector>
#ifdef _WIN32
#include <direct.h>
#include <io.h>
#else // Linux/Unix
#include <dirent.h>
#include <sys/io.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#include <string>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "include/paddlex/results.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
namespace PaddleX {
/*
* @brief
* Generate visualization colormap for each class
*
* @param number of class
* @return color map, the size of vector is 3 * num_class
* */
std::vector<int> GenerateColorMap(int num_class);
/*
* @brief
* Visualize the detection result
*
* @param img: initial image matrix
* @param results: the detection result
* @param labels: label map
* @param colormap: visualization color map
* @return visualized image matrix
* */
cv::Mat Visualize(const cv::Mat& img,
const DetResult& results,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap,
float threshold = 0.5);
/*
* @brief
* Visualize the segmentation result
*
* @param img: initial image matrix
* @param results: the detection result
* @param labels: label map
* @param colormap: visualization color map
* @return visualized image matrix
* */
cv::Mat Visualize(const cv::Mat& img,
const SegResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap);
/*
* @brief
* generate save path for visualized image matrix
*
* @param save_dir: directory for saving visualized image matrix
* @param file_path: sourcen image file path
* @return path of saving visualized result
* */
std::string generate_save_path(const std::string& save_dir,
const std::string& file_path);
} // namespace PaddleX
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from six import text_type as _text_type
import argparse
import sys
from utils import logging
import paddlex as pdx
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
"-m",
type=_text_type,
default=None,
help="define model directory path")
parser.add_argument(
"--save_dir",
"-s",
type=_text_type,
default=None,
help="path to save inference model")
parser.add_argument(
"--fixed_input_shape",
"-fs",
default=None,
help="export openvino model with input shape:[h,w]")
return parser
def export_openvino_model(model, args):
if model.model_type == "detector" or model.__class__.__name__ == "FastSCNN":
logging.error(
"Only image classifier models and semantic segmentation models(except FastSCNN) are supported to export to openvino")
try:
import x2paddle
if x2paddle.__version__ < '0.7.4':
logging.error("You need to upgrade x2paddle >= 0.7.4")
except:
logging.error(
"You need to install x2paddle first, pip install x2paddle>=0.7.4")
from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper
mapper = PaddleOpMapper()
mapper.convert(model.test_prog, args.save_dir)
import mo.main as mo
from mo.utils.cli_parser import get_onnx_cli_parser
onnx_parser = get_onnx_cli_parser()
onnx_parser.add_argument("--model_dir",type=_text_type)
onnx_parser.add_argument("--save_dir",type=_text_type)
onnx_parser.add_argument("--fixed_input_shape")
onnx_input = os.path.join(args.save_dir, 'x2paddle_model.onnx')
onnx_parser.set_defaults(input_model=onnx_input)
onnx_parser.set_defaults(output_dir=args.save_dir)
shape = '[1,3,'
shape = shape + args.fixed_input_shape[1:]
onnx_parser.set_defaults(input_shape = shape)
mo.main(onnx_parser,'onnx')
def main():
parser = arg_parser()
args = parser.parse_args()
assert args.model_dir is not None, "--model_dir should be defined while exporting openvino model"
assert args.save_dir is not None, "--save_dir should be defined to create openvino model"
model = pdx.load_model(args.model_dir)
if model.status == "Normal" or model.status == "Prune":
logging.error(
"Only support inference model, try to export model first as below,",
exit=False)
export_openvino_model(model, args)
if __name__ == "__main__":
main()
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import argparse
import deploy
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
"-m",
type=str,
default=None,
help="path to openvino model .xml file")
parser.add_argument(
"--device",
"-d",
type=str,
default='CPU',
help="Specify the target device to infer on:[CPU, GPU, FPGA, HDDL, MYRIAD,HETERO]"
"Default value is CPU")
parser.add_argument(
"--img",
"-i",
type=str,
default=None,
help="path to an image files")
parser.add_argument(
"--img_list",
"-l",
type=str,
default=None,
help="Path to a imglist")
parser.add_argument(
"--cfg_dir",
"-c",
type=str,
default=None,
help="Path to PaddelX model yml file")
return parser
def main():
parser = arg_parser()
args = parser.parse_args()
model_xml = args.model_dir
model_yaml = args.cfg_dir
#model init
if("CPU" not in args.device):
predictor = deploy.Predictor(model_xml,model_yaml,args.device)
else:
predictor = deploy.Predictor(model_xml,model_yaml)
#predict
if(args.img_list != None):
f = open(args.img_list)
lines = f.readlines()
for im_path in lines:
print(im_path)
predictor.predict(im_path.strip('\n'))
f.close()
else:
im_path = args.img
predictor.predict(im_path)
if __name__ == "__main__":
main()
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import os.path as osp
import time
import cv2
import numpy as np
import yaml
from six import text_type as _text_type
from openvino.inference_engine import IECore
from utils import logging
class Predictor:
def __init__(self,
model_xml,
model_yaml,
device="CPU"):
self.device = device
if not osp.exists(model_xml):
logging.error("model xml file is not exists in {}".format(model_xml))
self.model_xml = model_xml
self.model_bin = osp.splitext(model_xml)[0] + ".bin"
if not osp.exists(model_yaml):
logging,error("model yaml file is not exists in {}".format(model_yaml))
with open(model_yaml) as f:
self.info = yaml.load(f.read(), Loader=yaml.Loader)
self.model_type = self.info['_Attributes']['model_type']
self.model_name = self.info['Model']
self.num_classes = self.info['_Attributes']['num_classes']
self.labels = self.info['_Attributes']['labels']
if self.info['Model'] == 'MaskRCNN':
if self.info['_init_params']['with_fpn']:
self.mask_head_resolution = 28
else:
self.mask_head_resolution = 14
transforms_mode = self.info.get('TransformsMode', 'RGB')
if transforms_mode == 'RGB':
to_rgb = True
else:
to_rgb = False
self.transforms = self.build_transforms(self.info['Transforms'], to_rgb)
self.predictor, self.net = self.create_predictor()
self.total_time = 0
self.count_num = 0
def create_predictor(self):
#initialization for specified device
logging.info("Creating Inference Engine")
ie = IECore()
logging.info("Loading network files:\n\t{}\n\t{}".format(self.model_xml, self.model_bin))
net = ie.read_network(model=self.model_xml, weights=self.model_bin)
net.batch_size = 1
network_config = {}
if self.device == "MYRIAD":
network_config = {'VPU_HW_STAGES_OPTIMIZATION':'NO'}
exec_net = ie.load_network(network=net, device_name=self.device, network_config)
return exec_net, net
def build_transforms(self, transforms_info, to_rgb=True):
if self.model_type == "classifier":
import transforms.cls_transforms as transforms
elif self.model_type == "detector":
import transforms.det_transforms as transforms
elif self.model_type == "segmenter":
import transforms.seg_transforms as transforms
op_list = list()
for op_info in transforms_info:
op_name = list(op_info.keys())[0]
op_attr = op_info[op_name]
if not hasattr(transforms, op_name):
raise Exception(
"There's no operator named '{}' in transforms of {}".
format(op_name, self.model_type))
op_list.append(getattr(transforms, op_name)(**op_attr))
eval_transforms = transforms.Compose(op_list)
if hasattr(eval_transforms, 'to_rgb'):
eval_transforms.to_rgb = to_rgb
self.arrange_transforms(eval_transforms)
return eval_transforms
def arrange_transforms(self, eval_transforms):
if self.model_type == 'classifier':
import transforms.cls_transforms as transforms
arrange_transform = transforms.ArrangeClassifier
elif self.model_type == 'segmenter':
import transforms.seg_transforms as transforms
arrange_transform = transforms.ArrangeSegmenter
elif self.model_type == 'detector':
import transforms.det_transforms as transforms
arrange_name = 'Arrange{}'.format(self.model_name)
arrange_transform = getattr(transforms, arrange_name)
else:
raise Exception("Unrecognized model type: {}".format(
self.model_type))
if type(eval_transforms.transforms[-1]).__name__.startswith('Arrange'):
eval_transforms.transforms[-1] = arrange_transform(mode='test')
else:
eval_transforms.transforms.append(arrange_transform(mode='test'))
def raw_predict(self, preprocessed_input):
self.count_num += 1
feed_dict = {}
if self.model_name == "YOLOv3":
inputs = self.net.inputs
for name in inputs:
if(len(inputs[name].shape) == 2):
feed_dict[name] = preprocessed_input['im_size']
elif(len(inputs[name].shape) == 4):
feed_dict[name] = preprocessed_input['image']
else:
pass
else:
input_blob = next(iter(self.net.inputs))
feed_dict[input_blob] = preprocessed_input['image']
#Start sync inference
logging.info("Starting inference in synchronous mode")
res = self.predictor.infer(inputs=feed_dict)
#Processing output blob
logging.info("Processing output blob")
return res
def preprocess(self, image):
res = dict()
if self.model_type == "classifier":
im, = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
res['image'] = im
elif self.model_type == "detector":
if self.model_name == "YOLOv3":
im, im_shape = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
im_shape = np.expand_dims(im_shape, axis=0).copy()
res['image'] = im
res['im_size'] = im_shape
if self.model_name.count('RCNN') > 0:
im, im_resize_info, im_shape = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
im_shape = np.expand_dims(im_shape, axis=0).copy()
res['image'] = im
res['im_info'] = im_resize_info
res['im_shape'] = im_shape
elif self.model_type == "segmenter":
im, im_info = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
#np.savetxt('./input_data.txt',im.flatten())
res['image'] = im
res['im_info'] = im_info
return res
def classifier_postprocess(self, preds, topk=1):
""" 对分类模型的预测结果做后处理
"""
true_topk = min(self.num_classes, topk)
output_name = next(iter(self.net.outputs))
pred_label = np.argsort(-preds[output_name][0])[:true_topk]
result = [{
'category_id': l,
'category': self.labels[l],
'score': preds[output_name][0][l],
} for l in pred_label]
print(result)
return result
def segmenter_postprocess(self, preds, preprocessed_inputs):
""" 对语义分割结果做后处理
"""
it = iter(self.net.outputs)
next(it)
score_name = next(it)
#np.savetxt('./score_map.txt',preds[score_name].flatten())
score_map = np.squeeze(preds[score_name])
score_map = np.transpose(score_map, (1, 2, 0))
label_name = next(it)
#np.savetxt('./label_map.txt',preds[label_name].flatten())
label_map = np.squeeze(preds[label_name]).astype('uint8')
im_info = preprocessed_inputs['im_info']
for info in im_info[::-1]:
if info[0] == 'resize':
w, h = info[1][1], info[1][0]
label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
elif info[0] == 'padding':
w, h = info[1][1], info[1][0]
label_map = label_map[0:h, 0:w]
score_map = score_map[0:h, 0:w, :]
else:
raise Exception("Unexpected info '{}' in im_info".format(info[
0]))
return {'label_map': label_map, 'score_map': score_map}
def detector_postprocess(self, preds, preprocessed_inputs):
"""对图像检测结果做后处理
"""
output_name = next(iter(self.net.outputs))
outputs = preds[output_name][0]
result = []
for out in outputs:
if(out[0] > 0):
result.append(out.tolist())
else:
pass
print(result)
return result
def predict(self, image, topk=1, threshold=0.5):
preprocessed_input = self.preprocess(image)
model_pred = self.raw_predict(preprocessed_input)
if self.model_type == "classifier":
results = self.classifier_postprocess(model_pred, topk)
elif self.model_type == "detector":
results = self.detector_postprocess(model_pred, preprocessed_input)
elif self.model_type == "segmenter":
results = self.segmenter_postprocess(model_pred,
preprocessed_input)
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import cls_transforms
from . import det_transforms
from . import seg_transforms
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import random
import math
import cv2
import scipy
def bbox_area(src_bbox):
if src_bbox[2] < src_bbox[0] or src_bbox[3] < src_bbox[1]:
return 0.
else:
width = src_bbox[2] - src_bbox[0]
height = src_bbox[3] - src_bbox[1]
return width * height
def jaccard_overlap(sample_bbox, object_bbox):
if sample_bbox[0] >= object_bbox[2] or \
sample_bbox[2] <= object_bbox[0] or \
sample_bbox[1] >= object_bbox[3] or \
sample_bbox[3] <= object_bbox[1]:
return 0
intersect_xmin = max(sample_bbox[0], object_bbox[0])
intersect_ymin = max(sample_bbox[1], object_bbox[1])
intersect_xmax = min(sample_bbox[2], object_bbox[2])
intersect_ymax = min(sample_bbox[3], object_bbox[3])
intersect_size = (intersect_xmax - intersect_xmin) * (
intersect_ymax - intersect_ymin)
sample_bbox_size = bbox_area(sample_bbox)
object_bbox_size = bbox_area(object_bbox)
overlap = intersect_size / (
sample_bbox_size + object_bbox_size - intersect_size)
return overlap
def iou_matrix(a, b):
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
area_o = (area_a[:, np.newaxis] + area_b - area_i)
return area_i / (area_o + 1e-10)
def crop_box_with_center_constraint(box, crop):
cropped_box = box.copy()
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
cropped_box[:, :2] -= crop[:2]
cropped_box[:, 2:] -= crop[:2]
centers = (box[:, :2] + box[:, 2:]) / 2
valid = np.logical_and(crop[:2] <= centers, centers < crop[2:]).all(axis=1)
valid = np.logical_and(
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
return cropped_box, np.where(valid)[0]
def is_poly(segm):
if not isinstance(segm, (list, dict)):
raise Exception("Invalid segm type: {}".format(type(segm)))
return isinstance(segm, list)
def crop_image(img, crop):
x1, y1, x2, y2 = crop
return img[y1:y2, x1:x2, :]
def crop_segms(segms, valid_ids, crop, height, width):
def _crop_poly(segm, crop):
xmin, ymin, xmax, ymax = crop
crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
crop_p = np.array(crop_coord).reshape(4, 2)
crop_p = Polygon(crop_p)
crop_segm = list()
for poly in segm:
poly = np.array(poly).reshape(len(poly) // 2, 2)
polygon = Polygon(poly)
if not polygon.is_valid:
exterior = polygon.exterior
multi_lines = exterior.intersection(exterior)
polygons = shapely.ops.polygonize(multi_lines)
polygon = MultiPolygon(polygons)
multi_polygon = list()
if isinstance(polygon, MultiPolygon):
multi_polygon = copy.deepcopy(polygon)
else:
multi_polygon.append(copy.deepcopy(polygon))
for per_polygon in multi_polygon:
inter = per_polygon.intersection(crop_p)
if not inter:
continue
if isinstance(inter, (MultiPolygon, GeometryCollection)):
for part in inter:
if not isinstance(part, Polygon):
continue
part = np.squeeze(
np.array(part.exterior.coords[:-1]).reshape(1, -1))
part[0::2] -= xmin
part[1::2] -= ymin
crop_segm.append(part.tolist())
elif isinstance(inter, Polygon):
crop_poly = np.squeeze(
np.array(inter.exterior.coords[:-1]).reshape(1, -1))
crop_poly[0::2] -= xmin
crop_poly[1::2] -= ymin
crop_segm.append(crop_poly.tolist())
else:
continue
return crop_segm
def _crop_rle(rle, crop, height, width):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, height, width)
mask = mask_util.decode(rle)
mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
crop_segms = []
for id in valid_ids:
segm = segms[id]
if is_poly(segm):
import copy
import shapely.ops
import logging
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
logging.getLogger("shapely").setLevel(logging.WARNING)
# Polygon format
crop_segms.append(_crop_poly(segm, crop))
else:
# RLE format
import pycocotools.mask as mask_util
crop_segms.append(_crop_rle(segm, crop, height, width))
return crop_segms
def expand_segms(segms, x, y, height, width, ratio):
def _expand_poly(poly, x, y):
expanded_poly = np.array(poly)
expanded_poly[0::2] += x
expanded_poly[1::2] += y
return expanded_poly.tolist()
def _expand_rle(rle, x, y, height, width, ratio):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, height, width)
mask = mask_util.decode(rle)
expanded_mask = np.full((int(height * ratio), int(width * ratio)),
0).astype(mask.dtype)
expanded_mask[y:y + height, x:x + width] = mask
rle = mask_util.encode(
np.array(expanded_mask, order='F', dtype=np.uint8))
return rle
expanded_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
expanded_segms.append([_expand_poly(poly, x, y) for poly in segm])
else:
# RLE format
import pycocotools.mask as mask_util
expanded_segms.append(
_expand_rle(segm, x, y, height, width, ratio))
return expanded_segms
def box_horizontal_flip(bboxes, width):
oldx1 = bboxes[:, 0].copy()
oldx2 = bboxes[:, 2].copy()
bboxes[:, 0] = width - oldx2 - 1
bboxes[:, 2] = width - oldx1 - 1
if bboxes.shape[0] != 0 and (bboxes[:, 2] < bboxes[:, 0]).all():
raise ValueError(
"RandomHorizontalFlip: invalid box, x2 should be greater than x1")
return bboxes
def segms_horizontal_flip(segms, height, width):
def _flip_poly(poly, width):
flipped_poly = np.array(poly)
flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
return flipped_poly.tolist()
def _flip_rle(rle, height, width):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects([rle], height, width)
mask = mask_util.decode(rle)
mask = mask[:, ::-1]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
flipped_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
flipped_segms.append([_flip_poly(poly, width) for poly in segm])
else:
# RLE format
import pycocotools.mask as mask_util
flipped_segms.append(_flip_rle(segm, height, width))
return flipped_segms
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .ops import *
from .imgaug_support import execute_imgaug
import random
import os.path as osp
import numpy as np
from PIL import Image, ImageEnhance
import utils.logging as logging
class ClsTransform:
"""分类Transform的基类
"""
def __init__(self):
pass
class Compose(ClsTransform):
"""根据数据预处理/增强算子对输入数据进行操作。
所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
Args:
transforms (list): 数据预处理/增强算子。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
def __init__(self, transforms):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
if len(transforms) < 1:
raise ValueError('The length of transforms ' + \
'must be equal or larger than 1!')
self.transforms = transforms
# 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
for op in self.transforms:
if not isinstance(op, ClsTransform):
import imgaug.augmenters as iaa
if not isinstance(op, iaa.Augmenter):
raise Exception(
"Elements in transforms should be defined in 'paddlex.cls.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
)
def __call__(self, im, label=None):
"""
Args:
im (str/np.ndarray): 图像路径/图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 根据网络所需字段所组成的tuple;
字段由transforms中的最后一个数据预处理操作决定。
"""
if isinstance(im, np.ndarray):
if len(im.shape) != 3:
raise Exception(
"im should be 3-dimension, but now is {}-dimensions".
format(len(im.shape)))
else:
try:
im = cv2.imread(im).astype('float32')
except:
raise TypeError('Can\'t read The image file {}!'.format(im))
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
for op in self.transforms:
if isinstance(op, ClsTransform):
outputs = op(im, label)
im = outputs[0]
if len(outputs) == 2:
label = outputs[1]
else:
import imgaug.augmenters as iaa
if isinstance(op, iaa.Augmenter):
im = execute_imgaug(op, im)
outputs = (im, )
if label is not None:
outputs = (im, label)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
transform_names = [type(x).__name__ for x in self.transforms]
for aug in augmenters:
if type(aug).__name__ in transform_names:
logging.error("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
self.transforms = augmenters + self.transforms
class RandomCrop(ClsTransform):
"""对图像进行随机剪裁,模型训练时的数据增强操作。
1. 根据lower_scale、lower_ratio、upper_ratio计算随机剪裁的高、宽。
2. 根据随机剪裁的高、宽随机选取剪裁的起始点。
3. 剪裁图像。
4. 调整剪裁后的图像的大小到crop_size*crop_size。
Args:
crop_size (int): 随机裁剪后重新调整的目标边长。默认为224。
lower_scale (float): 裁剪面积相对原面积比例的最小限制。默认为0.08。
lower_ratio (float): 宽变换比例的最小限制。默认为3. / 4。
upper_ratio (float): 宽变换比例的最大限制。默认为4. / 3。
"""
def __init__(self,
crop_size=224,
lower_scale=0.08,
lower_ratio=3. / 4,
upper_ratio=4. / 3):
self.crop_size = crop_size
self.lower_scale = lower_scale
self.lower_ratio = lower_ratio
self.upper_ratio = upper_ratio
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
im = random_crop(im, self.crop_size, self.lower_scale,
self.lower_ratio, self.upper_ratio)
if label is None:
return (im, )
else:
return (im, label)
class RandomHorizontalFlip(ClsTransform):
"""以一定的概率对图像进行随机水平翻转,模型训练时的数据增强操作。
Args:
prob (float): 随机水平翻转的概率。默认为0.5。
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
if random.random() < self.prob:
im = horizontal_flip(im)
if label is None:
return (im, )
else:
return (im, label)
class RandomVerticalFlip(ClsTransform):
"""以一定的概率对图像进行随机垂直翻转,模型训练时的数据增强操作。
Args:
prob (float): 随机垂直翻转的概率。默认为0.5。
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
if random.random() < self.prob:
im = vertical_flip(im)
if label is None:
return (im, )
else:
return (im, label)
class Normalize(ClsTransform):
"""对图像进行标准化。
1. 对图像进行归一化到区间[0.0, 1.0]。
2. 对图像进行减均值除以标准差操作。
Args:
mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
"""
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im = normalize(im, mean, std)
if label is None:
return (im, )
else:
return (im, label)
class ResizeByShort(ClsTransform):
"""根据图像短边对图像重新调整大小(resize)。
1. 获取图像的长边和短边长度。
2. 根据短边与short_size的比例,计算长边的目标长度,
此时高、宽的resize比例为short_size/原图短边长度。
3. 如果max_size>0,调整resize比例:
如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度;
4. 根据调整大小的比例对图像进行resize。
Args:
short_size (int): 调整大小后的图像目标短边长度。默认为256。
max_size (int): 长边目标长度的最大限制。默认为-1。
"""
def __init__(self, short_size=256, max_size=-1):
self.short_size = short_size
self.max_size = max_size
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
im_short_size = min(im.shape[0], im.shape[1])
im_long_size = max(im.shape[0], im.shape[1])
scale = float(self.short_size) / im_short_size
if self.max_size > 0 and np.round(scale *
im_long_size) > self.max_size:
scale = float(self.max_size) / float(im_long_size)
resized_width = int(round(im.shape[1] * scale))
resized_height = int(round(im.shape[0] * scale))
im = cv2.resize(
im, (resized_width, resized_height),
interpolation=cv2.INTER_LINEAR)
if label is None:
return (im, )
else:
return (im, label)
class CenterCrop(ClsTransform):
"""以图像中心点扩散裁剪长宽为`crop_size`的正方形
1. 计算剪裁的起始点。
2. 剪裁图像。
Args:
crop_size (int): 裁剪的目标边长。默认为224。
"""
def __init__(self, crop_size=224):
self.crop_size = crop_size
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
im = center_crop(im, self.crop_size)
if label is None:
return (im, )
else:
return (im, label)
class RandomRotate(ClsTransform):
def __init__(self, rotate_range=30, prob=0.5):
"""以一定的概率对图像在[-rotate_range, rotaterange]角度范围内进行旋转,模型训练时的数据增强操作。
Args:
rotate_range (int): 旋转度数的范围。默认为30。
prob (float): 随机旋转的概率。默认为0.5。
"""
self.rotate_range = rotate_range
self.prob = prob
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
rotate_lower = -self.rotate_range
rotate_upper = self.rotate_range
im = im.astype('uint8')
im = Image.fromarray(im)
if np.random.uniform(0, 1) < self.prob:
im = rotate(im, rotate_lower, rotate_upper)
im = np.asarray(im).astype('float32')
if label is None:
return (im, )
else:
return (im, label)
class RandomDistort(ClsTransform):
"""以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作。
1. 对变换的操作顺序进行随机化操作。
2. 按照1中的顺序以一定的概率对图像在范围[-range, range]内进行随机像素内容变换。
Args:
brightness_range (float): 明亮度因子的范围。默认为0.9。
brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
contrast_range (float): 对比度因子的范围。默认为0.9。
contrast_prob (float): 随机调整对比度的概率。默认为0.5。
saturation_range (float): 饱和度因子的范围。默认为0.9。
saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
hue_range (int): 色调因子的范围。默认为18。
hue_prob (float): 随机调整色调的概率。默认为0.5。
"""
def __init__(self,
brightness_range=0.9,
brightness_prob=0.5,
contrast_range=0.9,
contrast_prob=0.5,
saturation_range=0.9,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5):
self.brightness_range = brightness_range
self.brightness_prob = brightness_prob
self.contrast_range = contrast_range
self.contrast_prob = contrast_prob
self.saturation_range = saturation_range
self.saturation_prob = saturation_prob
self.hue_range = hue_range
self.hue_prob = hue_prob
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当label为空时,返回的tuple为(im, ),对应图像np.ndarray数据;
当label不为空时,返回的tuple为(im, label),分别对应图像np.ndarray数据、图像类别id。
"""
brightness_lower = 1 - self.brightness_range
brightness_upper = 1 + self.brightness_range
contrast_lower = 1 - self.contrast_range
contrast_upper = 1 + self.contrast_range
saturation_lower = 1 - self.saturation_range
saturation_upper = 1 + self.saturation_range
hue_lower = -self.hue_range
hue_upper = self.hue_range
ops = [brightness, contrast, saturation, hue]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
}
}
prob_dict = {
'brightness': self.brightness_prob,
'contrast': self.contrast_prob,
'saturation': self.saturation_prob,
'hue': self.hue_prob,
}
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
prob = prob_dict[ops[id].__name__]
params['im'] = im
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
if label is None:
return (im, )
else:
return (im, label)
class ArrangeClassifier(ClsTransform):
"""获取训练/验证/预测所需信息。注意:此操作不需用户自己显示调用
Args:
mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
Raises:
ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
"""
def __init__(self, mode=None):
if mode not in ['train', 'eval', 'test', 'quant']:
raise ValueError(
"mode must be in ['train', 'eval', 'test', 'quant']!")
self.mode = mode
def __call__(self, im, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
label (int): 每张图像所对应的类别序号。
Returns:
tuple: 当mode为'train'或'eval'时,返回(im, label),分别对应图像np.ndarray数据、
图像类别id;当mode为'test'或'quant'时,返回(im, ),对应图像np.ndarray数据。
"""
im = permute(im, False).astype('float32')
if self.mode == 'train' or self.mode == 'eval':
outputs = (im, label)
else:
outputs = (im, )
return outputs
class ComposedClsTransforms(Compose):
""" 分类模型的基础Transforms流程,具体如下
训练阶段:
1. 随机从图像中crop一块子图,并resize成crop_size大小
2. 将1的输出按0.5的概率随机进行水平翻转
3. 将图像进行归一化
验证/预测阶段:
1. 将图像按比例Resize,使得最小边长度为crop_size[0] * 1.14
2. 从图像中心crop出一个大小为crop_size的图像
3. 将图像进行归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
crop_size(int|list): 输入模型里的图像大小
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
crop_size=[224, 224],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
width = crop_size
if isinstance(crop_size, list):
if crop_size[0] != crop_size[1]:
raise Exception(
"In classifier model, width and height should be equal, please modify your parameter `crop_size`"
)
width = crop_size[0]
if width % 32 != 0:
raise Exception(
"In classifier model, width and height should be multiple of 32, e.g 224、256、320...., please modify your parameter `crop_size`"
)
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomCrop(crop_size=width), RandomHorizontalFlip(prob=0.5),
Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [
ResizeByShort(short_size=int(width * 1.14)),
CenterCrop(crop_size=width), Normalize(
mean=mean, std=std)
]
super(ComposedClsTransforms, self).__init__(transforms)
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
import random
import os.path as osp
import numpy as np
import cv2
from PIL import Image, ImageEnhance
from .imgaug_support import execute_imgaug
from .ops import *
from .box_utils import *
import utils.logging as logging
class DetTransform:
"""检测数据处理基类
"""
def __init__(self):
pass
class Compose(DetTransform):
"""根据数据预处理/增强列表对输入数据进行操作。
所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
Args:
transforms (list): 数据预处理/增强列表。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
def __init__(self, transforms):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
if len(transforms) < 1:
raise ValueError('The length of transforms ' + \
'must be equal or larger than 1!')
self.transforms = transforms
self.use_mixup = False
for t in self.transforms:
if type(t).__name__ == 'MixupImage':
self.use_mixup = True
# 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
for op in self.transforms:
if not isinstance(op, DetTransform):
import imgaug.augmenters as iaa
if not isinstance(op, iaa.Augmenter):
raise Exception(
"Elements in transforms should be defined in 'paddlex.det.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
)
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (str/np.ndarray): 图像路径/图像np.ndarray数据。
im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- im_id (np.ndarray): 图像序列号,形状为(1,)。
- image_shape (np.ndarray): 图像原始大小,形状为(2,),
image_shape[0]为高,image_shape[1]为宽。
- mixup (list): list为[im, im_info, label_info],分别对应
与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
注意,当前epoch若无需进行mixup,则无该字段。
label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
- gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
其中n代表真实标注框的个数。
- gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
其中n代表真实标注框的个数。
- gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
其中n代表真实标注框的个数。
- gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
长度为n,其中n代表真实标注框的个数。
- is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
其中n代表真实标注框的个数。
- difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
其中n代表真实标注框的个数。
Returns:
tuple: 根据网络所需字段所组成的tuple;
字段由transforms中的最后一个数据预处理操作决定。
"""
def decode_image(im_file, im_info, label_info):
if im_info is None:
im_info = dict()
if isinstance(im_file, np.ndarray):
if len(im_file.shape) != 3:
raise Exception(
"im should be 3-dimensions, but now is {}-dimensions".
format(len(im_file.shape)))
im = im_file
else:
try:
im = cv2.imread(im_file).astype('float32')
except:
raise TypeError('Can\'t read The image file {}!'.format(
im_file))
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# make default im_info with [h, w, 1]
im_info['im_resize_info'] = np.array(
[im.shape[0], im.shape[1], 1.], dtype=np.float32)
im_info['image_shape'] = np.array([im.shape[0],
im.shape[1]]).astype('int32')
if not self.use_mixup:
if 'mixup' in im_info:
del im_info['mixup']
# decode mixup image
if 'mixup' in im_info:
im_info['mixup'] = \
decode_image(im_info['mixup'][0],
im_info['mixup'][1],
im_info['mixup'][2])
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
outputs = decode_image(im, im_info, label_info)
im = outputs[0]
im_info = outputs[1]
if len(outputs) == 3:
label_info = outputs[2]
for op in self.transforms:
if im is None:
return None
if isinstance(op, DetTransform):
outputs = op(im, im_info, label_info)
im = outputs[0]
else:
im = execute_imgaug(op, im)
if label_info is not None:
outputs = (im, im_info, label_info)
else:
outputs = (im, im_info)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
transform_names = [type(x).__name__ for x in self.transforms]
for aug in augmenters:
if type(aug).__name__ in transform_names:
logging.error("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
self.transforms = augmenters + self.transforms
class ResizeByShort(DetTransform):
"""根据图像的短边调整图像大小(resize)。
1. 获取图像的长边和短边长度。
2. 根据短边与short_size的比例,计算长边的目标长度,
此时高、宽的resize比例为short_size/原图短边长度。
3. 如果max_size>0,调整resize比例:
如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
4. 根据调整大小的比例对图像进行resize。
Args:
target_size (int): 短边目标长度。默认为800。
max_size (int): 长边目标长度的最大限制。默认为1333。
Raises:
TypeError: 形参数据类型不满足需求。
"""
def __init__(self, short_size=800, max_size=1333):
self.max_size = int(max_size)
if not isinstance(short_size, int):
raise TypeError(
"Type of short_size is invalid. Must be Integer, now is {}".
format(type(short_size)))
self.short_size = short_size
if not (isinstance(self.max_size, int)):
raise TypeError("max_size: input type is invalid.")
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (numnp.ndarraypy): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
三者组成的np.ndarray,形状为(3,)。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
if im_info is None:
im_info = dict()
if not isinstance(im, np.ndarray):
raise TypeError("ResizeByShort: image type is not numpy.")
if len(im.shape) != 3:
raise ValueError('ResizeByShort: image is not 3-dimensional.')
im_short_size = min(im.shape[0], im.shape[1])
im_long_size = max(im.shape[0], im.shape[1])
scale = float(self.short_size) / im_short_size
if self.max_size > 0 and np.round(scale *
im_long_size) > self.max_size:
scale = float(self.max_size) / float(im_long_size)
resized_width = int(round(im.shape[1] * scale))
resized_height = int(round(im.shape[0] * scale))
im_resize_info = [resized_height, resized_width, scale]
im = cv2.resize(
im, (resized_width, resized_height),
interpolation=cv2.INTER_LINEAR)
im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
class Padding(DetTransform):
"""1.将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
`coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
进行padding,最终输出图像为[320, 640]。
2.或者,将图像的长和宽padding到target_size指定的shape,如输入的图像为[300,640],
a. `target_size` = 960,在图像最右和最下使用0值进行padding,最终输出
图像为[960, 960]。
b. `target_size` = [640, 960],在图像最右和最下使用0值进行padding,最终
输出图像为[640, 960]。
1. 如果coarsest_stride为1,target_size为None则直接返回。
2. 获取图像的高H、宽W。
3. 计算填充后图像的高H_new、宽W_new。
4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
并将原图的np.ndarray粘贴于左上角。
Args:
coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
target_size (int|list|tuple): 填充后的图像长、宽,默认为None,coarset_stride优先级更高。
Raises:
TypeError: 形参`target_size`数据类型不满足需求。
ValueError: 形参`target_size`为(list|tuple)时,长度不满足需求。
"""
def __init__(self, coarsest_stride=1, target_size=None):
self.coarsest_stride = coarsest_stride
if target_size is not None:
if not isinstance(target_size, int):
if not isinstance(target_size, tuple) and not isinstance(
target_size, list):
raise TypeError(
"Padding: Type of target_size must in (int|list|tuple)."
)
elif len(target_size) != 2:
raise ValueError(
"Padding: Length of target_size must equal 2.")
self.target_size = target_size
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (numnp.ndarraypy): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
ValueError: coarsest_stride,target_size需有且只有一个被指定。
ValueError: target_size小于原图的大小。
"""
if im_info is None:
im_info = dict()
if not isinstance(im, np.ndarray):
raise TypeError("Padding: image type is not numpy.")
if len(im.shape) != 3:
raise ValueError('Padding: image is not 3-dimensional.')
im_h, im_w, im_c = im.shape[:]
if isinstance(self.target_size, int):
padding_im_h = self.target_size
padding_im_w = self.target_size
elif isinstance(self.target_size, list) or isinstance(self.target_size,
tuple):
padding_im_w = self.target_size[0]
padding_im_h = self.target_size[1]
elif self.coarsest_stride > 0:
padding_im_h = int(
np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
padding_im_w = int(
np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
else:
raise ValueError(
"coarsest_stridei(>1) or target_size(list|int) need setting in Padding transform"
)
pad_height = padding_im_h - im_h
pad_width = padding_im_w - im_w
if pad_height < 0 or pad_width < 0:
raise ValueError(
'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
.format(im_w, im_h, padding_im_w, padding_im_h))
padding_im = np.zeros(
(padding_im_h, padding_im_w, im_c), dtype=np.float32)
padding_im[:im_h, :im_w, :] = im
if label_info is None:
return (padding_im, im_info)
else:
return (padding_im, im_info, label_info)
class Resize(DetTransform):
"""调整图像大小(resize)。
- 当目标大小(target_size)类型为int时,根据插值方式,
将图像resize为[target_size, target_size]。
- 当目标大小(target_size)类型为list或tuple时,根据插值方式,
将图像resize为target_size。
注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
Args:
target_size (int/list/tuple): 短边目标长度。默认为608。
interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
'AREA', 'LANCZOS4', 'RANDOM']中。
"""
# The interpolation mode
interp_dict = {
'NEAREST': cv2.INTER_NEAREST,
'LINEAR': cv2.INTER_LINEAR,
'CUBIC': cv2.INTER_CUBIC,
'AREA': cv2.INTER_AREA,
'LANCZOS4': cv2.INTER_LANCZOS4
}
def __init__(self, target_size=608, interp='LINEAR'):
self.interp = interp
if not (interp == "RANDOM" or interp in self.interp_dict):
raise ValueError("interp should be one of {}".format(
self.interp_dict.keys()))
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise TypeError(
'when target is list or tuple, it should include 2 elements, but it is {}'
.format(target_size))
elif not isinstance(target_size, int):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
if im_info is None:
im_info = dict()
if not isinstance(im, np.ndarray):
raise TypeError("Resize: image type is not numpy.")
if len(im.shape) != 3:
raise ValueError('Resize: image is not 3-dimensional.')
if self.interp == "RANDOM":
interp = random.choice(list(self.interp_dict.keys()))
else:
interp = self.interp
im = resize(im, self.target_size, self.interp_dict[interp])
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
class RandomHorizontalFlip(DetTransform):
"""随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
执行2-4步操作,否则直接返回。
2. 水平翻转图像。
3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
Args:
prob (float): 随机水平翻转的概率。默认为0.5。
Raises:
TypeError: 形参数据类型不满足需求。
"""
def __init__(self, prob=0.5):
self.prob = prob
if not isinstance(self.prob, float):
raise TypeError("RandomHorizontalFlip: input type is invalid.")
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
其中n代表真实标注框的个数。
- gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
其中n代表真实标注框的个数。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
if not isinstance(im, np.ndarray):
raise TypeError(
"RandomHorizontalFlip: image is not a numpy array.")
if len(im.shape) != 3:
raise ValueError(
"RandomHorizontalFlip: image is not 3-dimensional.")
if im_info is None or label_info is None:
raise TypeError(
'Cannot do RandomHorizontalFlip! ' +
'Becasuse the im_info and label_info can not be None!')
if 'gt_bbox' not in label_info:
raise TypeError('Cannot do RandomHorizontalFlip! ' + \
'Becasuse gt_bbox is not in label_info!')
image_shape = im_info['image_shape']
gt_bbox = label_info['gt_bbox']
height = image_shape[0]
width = image_shape[1]
if np.random.uniform(0, 1) < self.prob:
im = horizontal_flip(im)
if gt_bbox.shape[0] == 0:
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
if 'gt_poly' in label_info and \
len(label_info['gt_poly']) != 0:
label_info['gt_poly'] = segms_horizontal_flip(
label_info['gt_poly'], height, width)
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
class Normalize(DetTransform):
"""对图像进行标准化。
1. 归一化图像到到区间[0.0, 1.0]。
2. 对图像进行减均值除以标准差操作。
Args:
mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
Raises:
TypeError: 形参数据类型不满足需求。
"""
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
if not (isinstance(self.mean, list) and isinstance(self.std, list)):
raise TypeError("NormalizeImage: input type is invalid.")
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise TypeError('NormalizeImage: std is invalid!')
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (numnp.ndarraypy): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
"""
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im = normalize(im, mean, std)
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
class RandomDistort(DetTransform):
"""以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
1. 对变换的操作顺序进行随机化操作。
2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
Args:
brightness_range (float): 明亮度因子的范围。默认为0.5。
brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
contrast_range (float): 对比度因子的范围。默认为0.5。
contrast_prob (float): 随机调整对比度的概率。默认为0.5。
saturation_range (float): 饱和度因子的范围。默认为0.5。
saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
hue_range (int): 色调因子的范围。默认为18。
hue_prob (float): 随机调整色调的概率。默认为0.5。
"""
def __init__(self,
brightness_range=0.5,
brightness_prob=0.5,
contrast_range=0.5,
contrast_prob=0.5,
saturation_range=0.5,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5):
self.brightness_range = brightness_range
self.brightness_prob = brightness_prob
self.contrast_range = contrast_range
self.contrast_prob = contrast_prob
self.saturation_range = saturation_range
self.saturation_prob = saturation_prob
self.hue_range = hue_range
self.hue_prob = hue_prob
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
"""
brightness_lower = 1 - self.brightness_range
brightness_upper = 1 + self.brightness_range
contrast_lower = 1 - self.contrast_range
contrast_upper = 1 + self.contrast_range
saturation_lower = 1 - self.saturation_range
saturation_upper = 1 + self.saturation_range
hue_lower = -self.hue_range
hue_upper = self.hue_range
ops = [brightness, contrast, saturation, hue]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
}
}
prob_dict = {
'brightness': self.brightness_prob,
'contrast': self.contrast_prob,
'saturation': self.saturation_prob,
'hue': self.hue_prob
}
for id in range(4):
params = params_dict[ops[id].__name__]
prob = prob_dict[ops[id].__name__]
params['im'] = im
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
class MixupImage(DetTransform):
"""对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
1. 从随机beta分布中抽取出随机因子factor。
2.
- 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
- 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
- 其余情况,执行下述操作:
(1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
(2)拼接原图像标注框和mixup图像标注框。
(3)拼接原图像标注框类别和mixup图像标注框类别。
(4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
3. 更新im_info中的image_shape信息。
Args:
alpha (float): 随机beta分布的下限。默认为1.5。
beta (float): 随机beta分布的上限。默认为1.5。
mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
默认为-1。
Raises:
ValueError: 数据长度不匹配。
"""
def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
self.alpha = alpha
self.beta = beta
if self.alpha <= 0.0:
raise ValueError("alpha shold be positive in MixupImage")
if self.beta <= 0.0:
raise ValueError("beta shold be positive in MixupImage")
self.mixup_epoch = mixup_epoch
def _mixup_img(self, img1, img2, factor):
h = max(img1.shape[0], img2.shape[0])
w = max(img1.shape[1], img2.shape[1])
img = np.zeros((h, w, img1.shape[2]), 'float32')
img[:img1.shape[0], :img1.shape[1], :] = \
img1.astype('float32') * factor
img[:img2.shape[0], :img2.shape[1], :] += \
img2.astype('float32') * (1.0 - factor)
return img.astype('float32')
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
im_info删除的字段:
- mixup (list): 与当前字段进行mixup的图像相关信息。
label_info更新字段为:
- gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
其中n代表真实标注框的个数。
- gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
其中n代表真实标注框的个数。
- gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
其中n代表真实标注框的个数。
Raises:
TypeError: 形参数据类型不满足需求。
"""
if im_info is None:
raise TypeError('Cannot do MixupImage! ' +
'Becasuse the im_info can not be None!')
if 'mixup' not in im_info:
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
factor = np.random.beta(self.alpha, self.beta)
factor = max(0.0, min(1.0, factor))
if im_info['epoch'] > self.mixup_epoch \
or factor >= 1.0:
im_info.pop('mixup')
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
if factor <= 0.0:
return im_info.pop('mixup')
im = self._mixup_img(im, im_info['mixup'][0], factor)
if label_info is None:
raise TypeError('Cannot do MixupImage! ' +
'Becasuse the label_info can not be None!')
if 'gt_bbox' not in label_info or \
'gt_class' not in label_info or \
'gt_score' not in label_info:
raise TypeError('Cannot do MixupImage! ' + \
'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
gt_bbox1 = label_info['gt_bbox']
gt_bbox2 = im_info['mixup'][2]['gt_bbox']
gt_class1 = label_info['gt_class']
gt_class2 = im_info['mixup'][2]['gt_class']
gt_score1 = label_info['gt_score']
gt_score2 = im_info['mixup'][2]['gt_score']
if 'gt_poly' in label_info:
gt_poly1 = label_info['gt_poly']
gt_poly2 = im_info['mixup'][2]['gt_poly']
is_crowd1 = label_info['is_crowd']
is_crowd2 = im_info['mixup'][2]['is_crowd']
if 0 not in gt_class1 and 0 not in gt_class2:
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
gt_score = np.concatenate(
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
if 'gt_poly' in label_info:
label_info['gt_poly'] = gt_poly1 + gt_poly2
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
elif 0 in gt_class1:
gt_bbox = gt_bbox2
gt_class = gt_class2
gt_score = gt_score2 * (1. - factor)
if 'gt_poly' in label_info:
label_info['gt_poly'] = gt_poly2
is_crowd = is_crowd2
else:
gt_bbox = gt_bbox1
gt_class = gt_class1
gt_score = gt_score1 * factor
if 'gt_poly' in label_info:
label_info['gt_poly'] = gt_poly1
is_crowd = is_crowd1
label_info['gt_bbox'] = gt_bbox
label_info['gt_score'] = gt_score
label_info['gt_class'] = gt_class
label_info['is_crowd'] = is_crowd
im_info['image_shape'] = np.array([im.shape[0],
im.shape[1]]).astype('int32')
im_info.pop('mixup')
if label_info is None:
return (im, im_info)
else:
return (im, im_info, label_info)
class RandomExpand(DetTransform):
"""随机扩张图像,模型训练时的数据增强操作。
1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
2. 计算扩张后图像大小。
3. 初始化像素值为输入填充值的图像,并将原图像随机粘贴于该图像上。
4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
5. 根据原图像粘贴位置换算出扩张后真实分割区域的位置坐标。
Args:
ratio (float): 图像扩张的最大比例。默认为4.0。
prob (float): 随机扩张的概率。默认为0.5。
fill_value (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
"""
def __init__(self,
ratio=4.,
prob=0.5,
fill_value=[123.675, 116.28, 103.53]):
super(RandomExpand, self).__init__()
assert ratio > 1.01, "expand ratio must be larger than 1.01"
self.ratio = ratio
self.prob = prob
assert isinstance(fill_value, Sequence), \
"fill value must be sequence"
if not isinstance(fill_value, tuple):
fill_value = tuple(fill_value)
self.fill_value = fill_value
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
label_info更新字段为:
- gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
其中n代表真实标注框的个数。
- gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
其中n代表真实标注框的个数。
Raises:
TypeError: 形参数据类型不满足需求。
"""
if im_info is None or label_info is None:
raise TypeError(
'Cannot do RandomExpand! ' +
'Becasuse the im_info and label_info can not be None!')
if 'gt_bbox' not in label_info or \
'gt_class' not in label_info:
raise TypeError('Cannot do RandomExpand! ' + \
'Becasuse gt_bbox/gt_class is not in label_info!')
if np.random.uniform(0., 1.) < self.prob:
return (im, im_info, label_info)
if 'gt_class' in label_info and 0 in label_info['gt_class']:
return (im, im_info, label_info)
image_shape = im_info['image_shape']
height = int(image_shape[0])
width = int(image_shape[1])
expand_ratio = np.random.uniform(1., self.ratio)
h = int(height * expand_ratio)
w = int(width * expand_ratio)
if not h > height or not w > width:
return (im, im_info, label_info)
y = np.random.randint(0, h - height)
x = np.random.randint(0, w - width)
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + height, x:x + width, :] = im
im_info['image_shape'] = np.array([h, w]).astype('int32')
if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
label_info['gt_poly'] = expand_segms(label_info['gt_poly'], x, y,
height, width, expand_ratio)
return (canvas, im_info, label_info)
class RandomCrop(DetTransform):
"""随机裁剪图像。
1. 若allow_no_crop为True,则在thresholds加入’no_crop’。
2. 随机打乱thresholds。
3. 遍历thresholds中各元素:
(1) 如果当前thresh为’no_crop’,则返回原始图像和标注信息。
(2) 随机取出aspect_ratio和scaling中的值并由此计算出候选裁剪区域的高、宽、起始点。
(3) 计算真实标注框与候选裁剪区域IoU,若全部真实标注框的IoU都小于thresh,则继续第3步。
(4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
(5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
5. 换算有效分割区域相对候选裁剪区域的位置坐标。
Args:
aspect_ratio (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
thresholds (list): 判断裁剪候选区域是否有效所需的IoU阈值取值列表。默认值为[.0, .1, .3, .5, .7, .9]。
scaling (list): 裁剪面积相对原面积的取值范围,以[min, max]形式表示。默认值为[.3, 1.]。
num_attempts (int): 在放弃寻找有效裁剪区域前尝试的次数。默认值为50。
allow_no_crop (bool): 是否允许未进行裁剪。默认值为True。
cover_all_box (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
"""
def __init__(self,
aspect_ratio=[.5, 2.],
thresholds=[.0, .1, .3, .5, .7, .9],
scaling=[.3, 1.],
num_attempts=50,
allow_no_crop=True,
cover_all_box=False):
self.aspect_ratio = aspect_ratio
self.thresholds = thresholds
self.scaling = scaling
self.num_attempts = num_attempts
self.allow_no_crop = allow_no_crop
self.cover_all_box = cover_all_box
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
label_info更新字段为:
- gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
其中n代表真实标注框的个数。
- gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
其中n代表真实标注框的个数。
- gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
其中n代表真实标注框的个数。
Raises:
TypeError: 形参数据类型不满足需求。
"""
if im_info is None or label_info is None:
raise TypeError(
'Cannot do RandomCrop! ' +
'Becasuse the im_info and label_info can not be None!')
if 'gt_bbox' not in label_info or \
'gt_class' not in label_info:
raise TypeError('Cannot do RandomCrop! ' + \
'Becasuse gt_bbox/gt_class is not in label_info!')
if len(label_info['gt_bbox']) == 0:
return (im, im_info, label_info)
if 'gt_class' in label_info and 0 in label_info['gt_class']:
return (im, im_info, label_info)
image_shape = im_info['image_shape']
w = image_shape[1]
h = image_shape[0]
gt_bbox = label_info['gt_bbox']
thresholds = list(self.thresholds)
if self.allow_no_crop:
thresholds.append('no_crop')
np.random.shuffle(thresholds)
for thresh in thresholds:
if thresh == 'no_crop':
return (im, im_info, label_info)
found = False
for i in range(self.num_attempts):
scale = np.random.uniform(*self.scaling)
min_ar, max_ar = self.aspect_ratio
aspect_ratio = np.random.uniform(
max(min_ar, scale**2), min(max_ar, scale**-2))
crop_h = int(h * scale / np.sqrt(aspect_ratio))
crop_w = int(w * scale * np.sqrt(aspect_ratio))
crop_y = np.random.randint(0, h - crop_h)
crop_x = np.random.randint(0, w - crop_w)
crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
iou = iou_matrix(
gt_bbox, np.array(
[crop_box], dtype=np.float32))
if iou.max() < thresh:
continue
if self.cover_all_box and iou.min() < thresh:
continue
cropped_box, valid_ids = crop_box_with_center_constraint(
gt_bbox, np.array(
crop_box, dtype=np.float32))
if valid_ids.size > 0:
found = True
break
if found:
if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
crop_polys = crop_segms(
label_info['gt_poly'],
valid_ids,
np.array(
crop_box, dtype=np.int64),
h,
w)
if [] in crop_polys:
delete_id = list()
valid_polys = list()
for id, crop_poly in enumerate(crop_polys):
if crop_poly == []:
delete_id.append(id)
else:
valid_polys.append(crop_poly)
valid_ids = np.delete(valid_ids, delete_id)
if len(valid_polys) == 0:
return (im, im_info, label_info)
label_info['gt_poly'] = valid_polys
else:
label_info['gt_poly'] = crop_polys
im = crop_image(im, crop_box)
label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
label_info['gt_class'] = np.take(
label_info['gt_class'], valid_ids, axis=0)
im_info['image_shape'] = np.array(
[crop_box[3] - crop_box[1],
crop_box[2] - crop_box[0]]).astype('int32')
if 'gt_score' in label_info:
label_info['gt_score'] = np.take(
label_info['gt_score'], valid_ids, axis=0)
if 'is_crowd' in label_info:
label_info['is_crowd'] = np.take(
label_info['is_crowd'], valid_ids, axis=0)
return (im, im_info, label_info)
return (im, im_info, label_info)
class ArrangeFasterRCNN(DetTransform):
"""获取FasterRCNN模型训练/验证/预测所需信息。
Args:
mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
Raises:
ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
"""
def __init__(self, mode=None):
if mode not in ['train', 'eval', 'test', 'quant']:
raise ValueError(
"mode must be in ['train', 'eval', 'test', 'quant']!")
self.mode = mode
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
图像相当对于原图的resize信息、图像大小信息。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
im = permute(im, False)
if self.mode == 'train':
if im_info is None or label_info is None:
raise TypeError(
'Cannot do ArrangeFasterRCNN! ' +
'Becasuse the im_info and label_info can not be None!')
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
raise ValueError("gt num mismatch: bbox and class.")
im_resize_info = im_info['im_resize_info']
gt_bbox = label_info['gt_bbox']
gt_class = label_info['gt_class']
is_crowd = label_info['is_crowd']
outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
elif self.mode == 'eval':
if im_info is None or label_info is None:
raise TypeError(
'Cannot do ArrangeFasterRCNN! ' +
'Becasuse the im_info and label_info can not be None!')
im_resize_info = im_info['im_resize_info']
im_id = im_info['im_id']
im_shape = np.array(
(im_info['image_shape'][0], im_info['image_shape'][1], 1),
dtype=np.float32)
gt_bbox = label_info['gt_bbox']
gt_class = label_info['gt_class']
is_difficult = label_info['difficult']
outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
is_difficult)
else:
if im_info is None:
raise TypeError('Cannot do ArrangeFasterRCNN! ' +
'Becasuse the im_info can not be None!')
im_resize_info = im_info['im_resize_info']
im_shape = np.array(
(im_info['image_shape'][0], im_info['image_shape'][1], 1),
dtype=np.float32)
outputs = (im, im_resize_info, im_shape)
return outputs
class ArrangeMaskRCNN(DetTransform):
"""获取MaskRCNN模型训练/验证/预测所需信息。
Args:
mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
Raises:
ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
"""
def __init__(self, mode=None):
if mode not in ['train', 'eval', 'test', 'quant']:
raise ValueError(
"mode must be in ['train', 'eval', 'test', 'quant']!")
self.mode = mode
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
im = permute(im, False)
if self.mode == 'train':
if im_info is None or label_info is None:
raise TypeError(
'Cannot do ArrangeTrainMaskRCNN! ' +
'Becasuse the im_info and label_info can not be None!')
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
raise ValueError("gt num mismatch: bbox and class.")
im_resize_info = im_info['im_resize_info']
gt_bbox = label_info['gt_bbox']
gt_class = label_info['gt_class']
is_crowd = label_info['is_crowd']
assert 'gt_poly' in label_info
segms = label_info['gt_poly']
if len(segms) != 0:
assert len(segms) == is_crowd.shape[0]
gt_masks = []
valid = True
for i in range(len(segms)):
segm = segms[i]
gt_segm = []
if is_crowd[i]:
gt_segm.append([[0, 0]])
else:
for poly in segm:
if len(poly) == 0:
valid = False
break
gt_segm.append(np.array(poly).reshape(-1, 2))
if (not valid) or len(gt_segm) == 0:
break
gt_masks.append(gt_segm)
outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
gt_masks)
else:
if im_info is None:
raise TypeError('Cannot do ArrangeMaskRCNN! ' +
'Becasuse the im_info can not be None!')
im_resize_info = im_info['im_resize_info']
im_shape = np.array(
(im_info['image_shape'][0], im_info['image_shape'][1], 1),
dtype=np.float32)
if self.mode == 'eval':
im_id = im_info['im_id']
outputs = (im, im_resize_info, im_id, im_shape)
else:
outputs = (im, im_resize_info, im_shape)
return outputs
class ArrangeYOLOv3(DetTransform):
"""获取YOLOv3模型训练/验证/预测所需信息。
Args:
mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
Raises:
ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
"""
def __init__(self, mode=None):
if mode not in ['train', 'eval', 'test', 'quant']:
raise ValueError(
"mode must be in ['train', 'eval', 'test', 'quant']!")
self.mode = mode
def __call__(self, im, im_info=None, label_info=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
分别对应图像np.ndarray数据、图像大小信息。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
im = permute(im, False)
if self.mode == 'train':
if im_info is None or label_info is None:
raise TypeError(
'Cannot do ArrangeYolov3! ' +
'Becasuse the im_info and label_info can not be None!')
im_shape = im_info['image_shape']
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
raise ValueError("gt num mismatch: bbox and class.")
if len(label_info['gt_bbox']) != len(label_info['gt_score']):
raise ValueError("gt num mismatch: bbox and score.")
gt_bbox = np.zeros((50, 4), dtype=im.dtype)
gt_class = np.zeros((50, ), dtype=np.int32)
gt_score = np.zeros((50, ), dtype=im.dtype)
gt_num = min(50, len(label_info['gt_bbox']))
if gt_num > 0:
label_info['gt_class'][:gt_num, 0] = label_info[
'gt_class'][:gt_num, 0] - 1
if -1 not in label_info['gt_class']:
gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
# parse [x1, y1, x2, y2] to [x, y, w, h]
gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
elif self.mode == 'eval':
if im_info is None or label_info is None:
raise TypeError(
'Cannot do ArrangeYolov3! ' +
'Becasuse the im_info and label_info can not be None!')
im_shape = im_info['image_shape']
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
raise ValueError("gt num mismatch: bbox and class.")
im_id = im_info['im_id']
gt_bbox = np.zeros((50, 4), dtype=im.dtype)
gt_class = np.zeros((50, ), dtype=np.int32)
difficult = np.zeros((50, ), dtype=np.int32)
gt_num = min(50, len(label_info['gt_bbox']))
if gt_num > 0:
label_info['gt_class'][:gt_num, 0] = label_info[
'gt_class'][:gt_num, 0] - 1
gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
else:
if im_info is None:
raise TypeError('Cannot do ArrangeYolov3! ' +
'Becasuse the im_info can not be None!')
im_shape = im_info['image_shape']
outputs = (im, im_shape)
return outputs
class ComposedRCNNTransforms(Compose):
""" RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
训练阶段:
1. 随机以0.5的概率将图像水平翻转
2. 图像归一化
3. 图像按比例Resize,scale计算方式如下
scale = min_max_size[0] / short_size_of_image
if max_size_of_image * scale > min_max_size[1]:
scale = min_max_size[1] / max_size_of_image
4. 将3步骤的长宽进行padding,使得长宽为32的倍数
验证阶段:
1. 图像归一化
2. 图像按比例Resize,scale计算方式同上训练阶段
3. 将2步骤的长宽进行padding,使得长宽为32的倍数
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
min_max_size=[800, 1333],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomHorizontalFlip(prob=0.5), Normalize(
mean=mean, std=std), ResizeByShort(
short_size=min_max_size[0], max_size=min_max_size[1]),
Padding(coarsest_stride=32)
]
else:
# 验证/预测时的transforms
transforms = [
Normalize(
mean=mean, std=std), ResizeByShort(
short_size=min_max_size[0], max_size=min_max_size[1]),
Padding(coarsest_stride=32)
]
super(ComposedRCNNTransforms, self).__init__(transforms)
class ComposedYOLOv3Transforms(Compose):
"""YOLOv3模型的图像预处理流程,具体如下,
训练阶段:
1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
4. 随机裁剪图像
5. 将4步骤的输出图像Resize成shape参数的大小
6. 随机0.5的概率水平翻转图像
7. 图像归一化
验证/预测阶段:
1. 将图像Resize成shape参数大小
2. 图像归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
shape=[608, 608],
mixup_epoch=250,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
width = shape
if isinstance(shape, list):
if shape[0] != shape[1]:
raise Exception(
"In YOLOv3 model, width and height should be equal")
width = shape[0]
if width % 32 != 0:
raise Exception(
"In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
)
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
RandomExpand(), RandomCrop(), Resize(
target_size=width,
interp='RANDOM'), RandomHorizontalFlip(), Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [
Resize(
target_size=width, interp='CUBIC'), Normalize(
mean=mean, std=std)
]
super(ComposedYOLOv3Transforms, self).__init__(transforms)
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import copy
def execute_imgaug(augmenter, im, bboxes=None, polygons=None,
segment_map=None):
# 预处理,将bboxes, polygons转换成imgaug格式
import imgaug.augmentables.kps as kps
import imgaug.augmentables.bbs as bbs
aug_im = im.astype('uint8')
aug_im = augmenter.augment(image=aug_im).astype('float32')
return aug_im
# TODO imgaug的标注处理逻辑与paddlex已存的transform存在部分差异
# 目前仅支持对原图进行处理,因此只能使用pixlevel的imgaug增强操作
# 以下代码暂不会执行
aug_bboxes = None
if bboxes is not None:
aug_bboxes = list()
for i in range(len(bboxes)):
x1 = bboxes[i, 0]
y1 = bboxes[i, 1]
x2 = bboxes[i, 2]
y2 = bboxes[i, 3]
aug_bboxes.append(bbs.BoundingBox(x1, y1, x2, y2))
aug_points = None
if polygons is not None:
aug_points = list()
for i in range(len(polygons)):
num = len(polygons[i])
for j in range(num):
tmp = np.reshape(polygons[i][j], (-1, 2))
for k in range(len(tmp)):
aug_points.append(kps.Keypoint(tmp[k, 0], tmp[k, 1]))
aug_segment_map = None
if segment_map is not None:
if len(segment_map.shape) == 2:
h, w = segment_map.shape
aug_segment_map = np.reshape(segment_map, (1, h, w, 1))
elif len(segment_map.shape) == 3:
h, w, c = segment_map.shape
aug_segment_map = np.reshape(segment_map, (1, h, w, c))
else:
raise Exception(
"Only support 2-dimensions for 3-dimensions for segment_map")
unnormalized_batch = augmenter.augment(
image=aug_im,
bounding_boxes=aug_bboxes,
keypoints=aug_points,
segmentation_maps=aug_segment_map,
return_batch=True)
aug_im = unnormalized_batch.images_aug[0]
aug_bboxes = unnormalized_batch.bounding_boxes_aug
aug_points = unnormalized_batch.keypoints_aug
aug_seg_map = unnormalized_batch.segmentation_maps_aug
aug_im = aug_im.astype('float32')
if aug_bboxes is not None:
converted_bboxes = list()
for i in range(len(aug_bboxes)):
converted_bboxes.append([
aug_bboxes[i].x1, aug_bboxes[i].y1, aug_bboxes[i].x2,
aug_bboxes[i].y2
])
aug_bboxes = converted_bboxes
aug_polygons = None
if aug_points is not None:
aug_polygons = copy.deepcopy(polygons)
idx = 0
for i in range(len(aug_polygons)):
num = len(aug_polygons[i])
for j in range(num):
num_points = len(aug_polygons[i][j]) // 2
for k in range(num_points):
aug_polygons[i][j][k * 2] = aug_points[idx].x
aug_polygons[i][j][k * 2 + 1] = aug_points[idx].y
idx += 1
result = [aug_im]
if aug_bboxes is not None:
result.append(np.array(aug_bboxes))
if aug_polygons is not None:
result.append(aug_polygons)
if aug_seg_map is not None:
n, h, w, c = aug_seg_map.shape
if len(segment_map.shape) == 2:
aug_seg_map = np.reshape(aug_seg_map, (h, w))
elif len(segment_map.shape) == 3:
aug_seg_map = np.reshape(aug_seg_map, (h, w, c))
result.append(aug_seg_map)
return result
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import math
import numpy as np
from PIL import Image, ImageEnhance
def normalize(im, mean, std):
im = im / 255.0
im -= mean
im /= std
return im
def permute(im, to_bgr=False):
im = np.swapaxes(im, 1, 2)
im = np.swapaxes(im, 1, 0)
if to_bgr:
im = im[[2, 1, 0], :, :]
return im
def resize_long(im, long_size=224, interpolation=cv2.INTER_LINEAR):
value = max(im.shape[0], im.shape[1])
scale = float(long_size) / float(value)
resized_width = int(round(im.shape[1] * scale))
resized_height = int(round(im.shape[0] * scale))
im = cv2.resize(
im, (resized_width, resized_height), interpolation=interpolation)
return im
def resize(im, target_size=608, interp=cv2.INTER_LINEAR):
if isinstance(target_size, list) or isinstance(target_size, tuple):
w = target_size[0]
h = target_size[1]
else:
w = target_size
h = target_size
im = cv2.resize(im, (w, h), interpolation=interp)
return im
def random_crop(im,
crop_size=224,
lower_scale=0.08,
lower_ratio=3. / 4,
upper_ratio=4. / 3):
scale = [lower_scale, 1.0]
ratio = [lower_ratio, upper_ratio]
aspect_ratio = math.sqrt(np.random.uniform(*ratio))
w = 1. * aspect_ratio
h = 1. / aspect_ratio
bound = min((float(im.shape[0]) / im.shape[1]) / (h**2),
(float(im.shape[1]) / im.shape[0]) / (w**2))
scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound)
target_area = im.shape[0] * im.shape[1] * np.random.uniform(
scale_min, scale_max)
target_size = math.sqrt(target_area)
w = int(target_size * w)
h = int(target_size * h)
i = np.random.randint(0, im.shape[0] - h + 1)
j = np.random.randint(0, im.shape[1] - w + 1)
im = im[i:i + h, j:j + w, :]
im = cv2.resize(im, (crop_size, crop_size))
return im
def center_crop(im, crop_size=224):
height, width = im.shape[:2]
w_start = (width - crop_size) // 2
h_start = (height - crop_size) // 2
w_end = w_start + crop_size
h_end = h_start + crop_size
im = im[h_start:h_end, w_start:w_end, :]
return im
def horizontal_flip(im):
if len(im.shape) == 3:
im = im[:, ::-1, :]
elif len(im.shape) == 2:
im = im[:, ::-1]
return im
def vertical_flip(im):
if len(im.shape) == 3:
im = im[::-1, :, :]
elif len(im.shape) == 2:
im = im[::-1, :]
return im
def bgr2rgb(im):
return im[:, :, ::-1]
def hue(im, hue_lower, hue_upper):
delta = np.random.uniform(hue_lower, hue_upper)
u = np.cos(delta * np.pi)
w = np.sin(delta * np.pi)
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
[0.211, -0.523, 0.311]])
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
[1.0, -1.107, 1.705]])
t = np.dot(np.dot(ityiq, bt), tyiq).T
im = np.dot(im, t)
return im
def saturation(im, saturation_lower, saturation_upper):
delta = np.random.uniform(saturation_lower, saturation_upper)
gray = im * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
gray = gray.sum(axis=2, keepdims=True)
gray *= (1.0 - delta)
im *= delta
im += gray
return im
def contrast(im, contrast_lower, contrast_upper):
delta = np.random.uniform(contrast_lower, contrast_upper)
im *= delta
return im
def brightness(im, brightness_lower, brightness_upper):
delta = np.random.uniform(brightness_lower, brightness_upper)
im += delta
return im
def rotate(im, rotate_lower, rotate_upper):
rotate_delta = np.random.uniform(rotate_lower, rotate_upper)
im = im.rotate(int(rotate_delta))
return im
def resize_padding(im, max_side_len=2400):
'''
resize image to a size multiple of 32 which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
'''
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
if max(resize_h, resize_w) > max_side_len:
ratio = float(
max_side_len) / resize_h if resize_h > resize_w else float(
max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
resize_h = max(32, resize_h)
resize_w = max(32, resize_w)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
#im = cv2.resize(im, (512, 512))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
_ratio = np.array([ratio_h, ratio_w]).reshape(-1, 2)
return im, _ratio
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .ops import *
from .imgaug_support import execute_imgaug
import random
import os.path as osp
import numpy as np
from PIL import Image
import cv2
from collections import OrderedDict
import utils.logging as logging
class SegTransform:
""" 分割transform基类
"""
def __init__(self):
pass
class Compose(SegTransform):
"""根据数据预处理/增强算子对输入数据进行操作。
所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
Args:
transforms (list): 数据预处理/增强算子。
Raises:
TypeError: transforms不是list对象
ValueError: transforms元素个数小于1。
"""
def __init__(self, transforms):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
if len(transforms) < 1:
raise ValueError('The length of transforms ' + \
'must be equal or larger than 1!')
self.transforms = transforms
self.to_rgb = False
# 检查transforms里面的操作,目前支持PaddleX定义的或者是imgaug操作
for op in self.transforms:
if not isinstance(op, SegTransform):
import imgaug.augmenters as iaa
if not isinstance(op, iaa.Augmenter):
raise Exception(
"Elements in transforms should be defined in 'paddlex.seg.transforms' or class of imgaug.augmenters.Augmenter, see docs here: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/"
)
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (str/np.ndarray): 图像路径/图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (str/np.ndarray): 标注图像路径/标注图像np.ndarray数据。
Returns:
tuple: 根据网络所需字段所组成的tuple;字段由transforms中的最后一个数据预处理操作决定。
"""
if im_info is None:
im_info = list()
if isinstance(im, np.ndarray):
if len(im.shape) != 3:
raise Exception(
"im should be 3-dimensions, but now is {}-dimensions".
format(len(im.shape)))
else:
try:
im = cv2.imread(im).astype('float32')
except:
raise ValueError('Can\'t read The image file {}!'.format(im))
if self.to_rgb:
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
if label is not None:
if not isinstance(label, np.ndarray):
label = np.asarray(Image.open(label))
for op in self.transforms:
if isinstance(op, SegTransform):
outputs = op(im, im_info, label)
im = outputs[0]
if len(outputs) >= 2:
im_info = outputs[1]
if len(outputs) == 3:
label = outputs[2]
else:
im = execute_imgaug(op, im)
if label is not None:
outputs = (im, im_info, label)
else:
outputs = (im, im_info)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
transform_names = [type(x).__name__ for x in self.transforms]
for aug in augmenters:
if type(aug).__name__ in transform_names:
logging.error("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
self.transforms = augmenters + self.transforms
class RandomHorizontalFlip(SegTransform):
"""以一定的概率对图像进行水平翻转。当存在标注图像时,则同步进行翻转。
Args:
prob (float): 随机水平翻转的概率。默认值为0.5。
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if random.random() < self.prob:
im = horizontal_flip(im)
if label is not None:
label = horizontal_flip(label)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class RandomVerticalFlip(SegTransform):
"""以一定的概率对图像进行垂直翻转。当存在标注图像时,则同步进行翻转。
Args:
prob (float): 随机垂直翻转的概率。默认值为0.1。
"""
def __init__(self, prob=0.1):
self.prob = prob
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if random.random() < self.prob:
im = vertical_flip(im)
if label is not None:
label = vertical_flip(label)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class Resize(SegTransform):
"""调整图像大小(resize),当存在标注图像时,则同步进行处理。
- 当目标大小(target_size)类型为int时,根据插值方式,
将图像resize为[target_size, target_size]。
- 当目标大小(target_size)类型为list或tuple时,根据插值方式,
将图像resize为target_size, target_size的输入应为[w, h]或(w, h)。
Args:
target_size (int|list|tuple): 目标大小。
interp (str): resize的插值方式,与opencv的插值方式对应,
可选的值为['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4'],默认为"LINEAR"。
Raises:
TypeError: target_size不是int/list/tuple。
ValueError: target_size为list/tuple时元素个数不等于2。
AssertionError: interp的取值不在['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4']之内。
"""
# The interpolation mode
interp_dict = {
'NEAREST': cv2.INTER_NEAREST,
'LINEAR': cv2.INTER_LINEAR,
'CUBIC': cv2.INTER_CUBIC,
'AREA': cv2.INTER_AREA,
'LANCZOS4': cv2.INTER_LANCZOS4
}
def __init__(self, target_size, interp='LINEAR'):
self.interp = interp
assert interp in self.interp_dict, "interp should be one of {}".format(
interp_dict.keys())
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'when target is list or tuple, it should include 2 elements, but it is {}'
.format(target_size))
elif not isinstance(target_size, int):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
其中,im_info跟新字段为:
-shape_before_resize (tuple): 保存resize之前图像的形状(h, w)。
Raises:
ZeroDivisionError: im的短边为0。
TypeError: im不是np.ndarray数据。
ValueError: im不是3维nd.ndarray。
"""
if im_info is None:
im_info = OrderedDict()
im_info.append(('resize', im.shape[:2]))
if not isinstance(im, np.ndarray):
raise TypeError("ResizeImage: image type is not np.ndarray.")
if len(im.shape) != 3:
raise ValueError('ResizeImage: image is not 3-dimensional.')
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
if float(im_size_min) == 0:
raise ZeroDivisionError('ResizeImage: min size of image is 0')
if isinstance(self.target_size, int):
resize_w = self.target_size
resize_h = self.target_size
else:
resize_w = self.target_size[0]
resize_h = self.target_size[1]
im_scale_x = float(resize_w) / float(im_shape[1])
im_scale_y = float(resize_h) / float(im_shape[0])
im = cv2.resize(
im,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp_dict[self.interp])
if label is not None:
label = cv2.resize(
label,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp_dict['NEAREST'])
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class ResizeByLong(SegTransform):
"""对图像长边resize到固定值,短边按比例进行缩放。当存在标注图像时,则同步进行处理。
Args:
long_size (int): resize后图像的长边大小。
"""
def __init__(self, long_size):
self.long_size = long_size
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
其中,im_info新增字段为:
-shape_before_resize (tuple): 保存resize之前图像的形状(h, w)。
"""
if im_info is None:
im_info = OrderedDict()
im_info.append(('resize', im.shape[:2]))
im = resize_long(im, self.long_size)
if label is not None:
label = resize_long(label, self.long_size, cv2.INTER_NEAREST)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class ResizeByShort(SegTransform):
"""根据图像的短边调整图像大小(resize)。
1. 获取图像的长边和短边长度。
2. 根据短边与short_size的比例,计算长边的目标长度,
此时高、宽的resize比例为short_size/原图短边长度。
3. 如果max_size>0,调整resize比例:
如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
4. 根据调整大小的比例对图像进行resize。
Args:
target_size (int): 短边目标长度。默认为800。
max_size (int): 长边目标长度的最大限制。默认为1333。
Raises:
TypeError: 形参数据类型不满足需求。
"""
def __init__(self, short_size=800, max_size=1333):
self.max_size = int(max_size)
if not isinstance(short_size, int):
raise TypeError(
"Type of short_size is invalid. Must be Integer, now is {}".
format(type(short_size)))
self.short_size = short_size
if not (isinstance(self.max_size, int)):
raise TypeError("max_size: input type is invalid.")
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (numnp.ndarraypy): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
其中,im_info更新字段为:
-shape_before_resize (tuple): 保存resize之前图像的形状(h, w)。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
if im_info is None:
im_info = OrderedDict()
if not isinstance(im, np.ndarray):
raise TypeError("ResizeByShort: image type is not numpy.")
if len(im.shape) != 3:
raise ValueError('ResizeByShort: image is not 3-dimensional.')
im_info.append(('resize', im.shape[:2]))
im_short_size = min(im.shape[0], im.shape[1])
im_long_size = max(im.shape[0], im.shape[1])
scale = float(self.short_size) / im_short_size
if self.max_size > 0 and np.round(scale *
im_long_size) > self.max_size:
scale = float(self.max_size) / float(im_long_size)
resized_width = int(round(im.shape[1] * scale))
resized_height = int(round(im.shape[0] * scale))
im = cv2.resize(
im, (resized_width, resized_height),
interpolation=cv2.INTER_NEAREST)
if label is not None:
im = cv2.resize(
label, (resized_width, resized_height),
interpolation=cv2.INTER_NEAREST)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class ResizeRangeScaling(SegTransform):
"""对图像长边随机resize到指定范围内,短边按比例进行缩放。当存在标注图像时,则同步进行处理。
Args:
min_value (int): 图像长边resize后的最小值。默认值400。
max_value (int): 图像长边resize后的最大值。默认值600。
Raises:
ValueError: min_value大于max_value
"""
def __init__(self, min_value=400, max_value=600):
if min_value > max_value:
raise ValueError('min_value must be less than max_value, '
'but they are {} and {}.'.format(min_value,
max_value))
self.min_value = min_value
self.max_value = max_value
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if self.min_value == self.max_value:
random_size = self.max_value
else:
random_size = int(
np.random.uniform(self.min_value, self.max_value) + 0.5)
im = resize_long(im, random_size, cv2.INTER_LINEAR)
if label is not None:
label = resize_long(label, random_size, cv2.INTER_NEAREST)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class ResizeStepScaling(SegTransform):
"""对图像按照某一个比例resize,这个比例以scale_step_size为步长
在[min_scale_factor, max_scale_factor]随机变动。当存在标注图像时,则同步进行处理。
Args:
min_scale_factor(float), resize最小尺度。默认值0.75。
max_scale_factor (float), resize最大尺度。默认值1.25。
scale_step_size (float), resize尺度范围间隔。默认值0.25。
Raises:
ValueError: min_scale_factor大于max_scale_factor
"""
def __init__(self,
min_scale_factor=0.75,
max_scale_factor=1.25,
scale_step_size=0.25):
if min_scale_factor > max_scale_factor:
raise ValueError(
'min_scale_factor must be less than max_scale_factor, '
'but they are {} and {}.'.format(min_scale_factor,
max_scale_factor))
self.min_scale_factor = min_scale_factor
self.max_scale_factor = max_scale_factor
self.scale_step_size = scale_step_size
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if self.min_scale_factor == self.max_scale_factor:
scale_factor = self.min_scale_factor
elif self.scale_step_size == 0:
scale_factor = np.random.uniform(self.min_scale_factor,
self.max_scale_factor)
else:
num_steps = int((self.max_scale_factor - self.min_scale_factor) /
self.scale_step_size + 1)
scale_factors = np.linspace(self.min_scale_factor,
self.max_scale_factor,
num_steps).tolist()
np.random.shuffle(scale_factors)
scale_factor = scale_factors[0]
im = cv2.resize(
im, (0, 0),
fx=scale_factor,
fy=scale_factor,
interpolation=cv2.INTER_LINEAR)
if label is not None:
label = cv2.resize(
label, (0, 0),
fx=scale_factor,
fy=scale_factor,
interpolation=cv2.INTER_NEAREST)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class Normalize(SegTransform):
"""对图像进行标准化。
1.尺度缩放到 [0,1]。
2.对图像进行减均值除以标准差操作。
Args:
mean (list): 图像数据集的均值。默认值[0.5, 0.5, 0.5]。
std (list): 图像数据集的标准差。默认值[0.5, 0.5, 0.5]。
Raises:
ValueError: mean或std不是list对象。std包含0。
"""
def __init__(self, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
self.mean = mean
self.std = std
if not (isinstance(self.mean, list) and isinstance(self.std, list)):
raise ValueError("{}: input type is invalid.".format(self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im = normalize(im, mean, std)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class Padding(SegTransform):
"""对图像或标注图像进行padding,padding方向为右和下。
根据提供的值对图像或标注图像进行padding操作。
Args:
target_size (int|list|tuple): padding后图像的大小。
im_padding_value (list): 图像padding的值。默认为[127.5, 127.5, 127.5]。
label_padding_value (int): 标注图像padding的值。默认值为255。
Raises:
TypeError: target_size不是int|list|tuple。
ValueError: target_size为list|tuple时元素个数不等于2。
"""
def __init__(self,
target_size,
im_padding_value=[127.5, 127.5, 127.5],
label_padding_value=255):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'when target is list or tuple, it should include 2 elements, but it is {}'
.format(target_size))
elif not isinstance(target_size, int):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
其中,im_info新增字段为:
-shape_before_padding (tuple): 保存padding之前图像的形状(h, w)。
Raises:
ValueError: 输入图像im或label的形状大于目标值
"""
if im_info is None:
im_info = OrderedDict()
im_info.append(('padding', im.shape[:2]))
im_height, im_width = im.shape[0], im.shape[1]
if isinstance(self.target_size, int):
target_height = self.target_size
target_width = self.target_size
else:
target_height = self.target_size[1]
target_width = self.target_size[0]
pad_height = target_height - im_height
pad_width = target_width - im_width
if pad_height < 0 or pad_width < 0:
raise ValueError(
'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
.format(im_width, im_height, target_width, target_height))
else:
im = cv2.copyMakeBorder(
im,
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.im_padding_value)
if label is not None:
label = cv2.copyMakeBorder(
label,
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.label_padding_value)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class RandomPaddingCrop(SegTransform):
"""对图像和标注图进行随机裁剪,当所需要的裁剪尺寸大于原图时,则进行padding操作。
Args:
crop_size (int|list|tuple): 裁剪图像大小。默认为512。
im_padding_value (list): 图像padding的值。默认为[127.5, 127.5, 127.5]。
label_padding_value (int): 标注图像padding的值。默认值为255。
Raises:
TypeError: crop_size不是int/list/tuple。
ValueError: target_size为list/tuple时元素个数不等于2。
"""
def __init__(self,
crop_size=512,
im_padding_value=[127.5, 127.5, 127.5],
label_padding_value=255):
if isinstance(crop_size, list) or isinstance(crop_size, tuple):
if len(crop_size) != 2:
raise ValueError(
'when crop_size is list or tuple, it should include 2 elements, but it is {}'
.format(crop_size))
elif not isinstance(crop_size, int):
raise TypeError(
"Type of crop_size is invalid. Must be Integer or List or tuple, now is {}"
.format(type(crop_size)))
self.crop_size = crop_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if isinstance(self.crop_size, int):
crop_width = self.crop_size
crop_height = self.crop_size
else:
crop_width = self.crop_size[0]
crop_height = self.crop_size[1]
img_height = im.shape[0]
img_width = im.shape[1]
if img_height == crop_height and img_width == crop_width:
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
else:
pad_height = max(crop_height - img_height, 0)
pad_width = max(crop_width - img_width, 0)
if (pad_height > 0 or pad_width > 0):
im = cv2.copyMakeBorder(
im,
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.im_padding_value)
if label is not None:
label = cv2.copyMakeBorder(
label,
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.label_padding_value)
img_height = im.shape[0]
img_width = im.shape[1]
if crop_height > 0 and crop_width > 0:
h_off = np.random.randint(img_height - crop_height + 1)
w_off = np.random.randint(img_width - crop_width + 1)
im = im[h_off:(crop_height + h_off), w_off:(w_off + crop_width
), :]
if label is not None:
label = label[h_off:(crop_height + h_off), w_off:(
w_off + crop_width)]
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class RandomBlur(SegTransform):
"""以一定的概率对图像进行高斯模糊。
Args:
prob (float): 图像模糊概率。默认为0.1。
"""
def __init__(self, prob=0.1):
self.prob = prob
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if self.prob <= 0:
n = 0
elif self.prob >= 1:
n = 1
else:
n = int(1.0 / self.prob)
if n > 0:
if np.random.randint(0, n) == 0:
radius = np.random.randint(3, 10)
if radius % 2 != 1:
radius = radius + 1
if radius > 9:
radius = 9
im = cv2.GaussianBlur(im, (radius, radius), 0, 0)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class RandomRotate(SegTransform):
"""对图像进行随机旋转, 模型训练时的数据增强操作。
在旋转区间[-rotate_range, rotate_range]内,对图像进行随机旋转,当存在标注图像时,同步进行,
并对旋转后的图像和标注图像进行相应的padding。
Args:
rotate_range (float): 最大旋转角度。默认为15度。
im_padding_value (list): 图像padding的值。默认为[127.5, 127.5, 127.5]。
label_padding_value (int): 标注图像padding的值。默认为255。
"""
def __init__(self,
rotate_range=15,
im_padding_value=[127.5, 127.5, 127.5],
label_padding_value=255):
self.rotate_range = rotate_range
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if self.rotate_range > 0:
(h, w) = im.shape[:2]
do_rotation = np.random.uniform(-self.rotate_range,
self.rotate_range)
pc = (w // 2, h // 2)
r = cv2.getRotationMatrix2D(pc, do_rotation, 1.0)
cos = np.abs(r[0, 0])
sin = np.abs(r[0, 1])
nw = int((h * sin) + (w * cos))
nh = int((h * cos) + (w * sin))
(cx, cy) = pc
r[0, 2] += (nw / 2) - cx
r[1, 2] += (nh / 2) - cy
dsize = (nw, nh)
im = cv2.warpAffine(
im,
r,
dsize=dsize,
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.im_padding_value)
label = cv2.warpAffine(
label,
r,
dsize=dsize,
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.label_padding_value)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class RandomScaleAspect(SegTransform):
"""裁剪并resize回原始尺寸的图像和标注图像。
按照一定的面积比和宽高比对图像进行裁剪,并reszie回原始图像的图像,当存在标注图时,同步进行。
Args:
min_scale (float):裁取图像占原始图像的面积比,取值[0,1],为0时则返回原图。默认为0.5。
aspect_ratio (float): 裁取图像的宽高比范围,非负值,为0时返回原图。默认为0.33。
"""
def __init__(self, min_scale=0.5, aspect_ratio=0.33):
self.min_scale = min_scale
self.aspect_ratio = aspect_ratio
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
if self.min_scale != 0 and self.aspect_ratio != 0:
img_height = im.shape[0]
img_width = im.shape[1]
for i in range(0, 10):
area = img_height * img_width
target_area = area * np.random.uniform(self.min_scale, 1.0)
aspectRatio = np.random.uniform(self.aspect_ratio,
1.0 / self.aspect_ratio)
dw = int(np.sqrt(target_area * 1.0 * aspectRatio))
dh = int(np.sqrt(target_area * 1.0 / aspectRatio))
if (np.random.randint(10) < 5):
tmp = dw
dw = dh
dh = tmp
if (dh < img_height and dw < img_width):
h1 = np.random.randint(0, img_height - dh)
w1 = np.random.randint(0, img_width - dw)
im = im[h1:(h1 + dh), w1:(w1 + dw), :]
label = label[h1:(h1 + dh), w1:(w1 + dw)]
im = cv2.resize(
im, (img_width, img_height),
interpolation=cv2.INTER_LINEAR)
label = cv2.resize(
label, (img_width, img_height),
interpolation=cv2.INTER_NEAREST)
break
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class RandomDistort(SegTransform):
"""对图像进行随机失真。
1. 对变换的操作顺序进行随机化操作。
2. 按照1中的顺序以一定的概率对图像进行随机像素内容变换。
Args:
brightness_range (float): 明亮度因子的范围。默认为0.5。
brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
contrast_range (float): 对比度因子的范围。默认为0.5。
contrast_prob (float): 随机调整对比度的概率。默认为0.5。
saturation_range (float): 饱和度因子的范围。默认为0.5。
saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
hue_range (int): 色调因子的范围。默认为18。
hue_prob (float): 随机调整色调的概率。默认为0.5。
"""
def __init__(self,
brightness_range=0.5,
brightness_prob=0.5,
contrast_range=0.5,
contrast_prob=0.5,
saturation_range=0.5,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5):
self.brightness_range = brightness_range
self.brightness_prob = brightness_prob
self.contrast_range = contrast_range
self.contrast_prob = contrast_prob
self.saturation_range = saturation_range
self.saturation_prob = saturation_prob
self.hue_range = hue_range
self.hue_prob = hue_prob
def __call__(self, im, im_info=None, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当label为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label不为空时,返回的tuple为(im, im_info, label),分别对应图像np.ndarray数据、
存储与图像相关信息的字典和标注图像np.ndarray数据。
"""
brightness_lower = 1 - self.brightness_range
brightness_upper = 1 + self.brightness_range
contrast_lower = 1 - self.contrast_range
contrast_upper = 1 + self.contrast_range
saturation_lower = 1 - self.saturation_range
saturation_upper = 1 + self.saturation_range
hue_lower = -self.hue_range
hue_upper = self.hue_range
ops = [brightness, contrast, saturation, hue]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
}
}
prob_dict = {
'brightness': self.brightness_prob,
'contrast': self.contrast_prob,
'saturation': self.saturation_prob,
'hue': self.hue_prob
}
for id in range(4):
params = params_dict[ops[id].__name__]
prob = prob_dict[ops[id].__name__]
params['im'] = im
if np.random.uniform(0, 1) < prob:
im = ops[id](**params)
if label is None:
return (im, im_info)
else:
return (im, im_info, label)
class ArrangeSegmenter(SegTransform):
"""获取训练/验证/预测所需的信息。
Args:
mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
Raises:
ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内
"""
def __init__(self, mode):
if mode not in ['train', 'eval', 'test', 'quant']:
raise ValueError(
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
)
self.mode = mode
def __call__(self, im, im_info, label=None):
"""
Args:
im (np.ndarray): 图像np.ndarray数据。
im_info (list): 存储图像reisze或padding前的shape信息,如
[('resize', [200, 300]), ('padding', [400, 600])]表示
图像在过resize前shape为(200, 300), 过padding前shape为
(400, 600)
label (np.ndarray): 标注图像np.ndarray数据。
Returns:
tuple: 当mode为'train'或'eval'时,返回的tuple为(im, label),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当mode为'test'时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;当mode为
'quant'时,返回的tuple为(im,),为图像np.ndarray数据。
"""
im = permute(im, False)
if self.mode == 'train' or self.mode == 'eval':
label = label[np.newaxis, :, :]
return (im, label)
elif self.mode == 'test':
return (im, im_info)
else:
return (im, )
class ComposedSegTransforms(Compose):
""" 语义分割模型(UNet/DeepLabv3p)的图像处理流程,具体如下
训练阶段:
1. 随机对图像以0.5的概率水平翻转
2. 按不同的比例随机Resize原图
3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
4. 图像归一化
预测阶段:
1. 图像归一化
Args:
mode(str): 图像处理所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
train_crop_size(list): 模型训练阶段,随机从原图crop的大小
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
train_crop_size=[769, 769],
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]):
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomHorizontalFlip(prob=0.5), ResizeStepScaling(),
RandomPaddingCrop(crop_size=train_crop_size), Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [Normalize(mean=mean, std=std)]
super(ComposedSegTransforms, self).__init__(transforms)
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
import sys
import colorama
from colorama import init
init(autoreset=True)
levels = {0: 'ERROR', 1: 'WARNING', 2: 'INFO', 3: 'DEBUG'}
log_level = 2
def log(level=2, message="", use_color=False):
current_time = time.time()
time_array = time.localtime(current_time)
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time_array)
if log_level >= level:
if use_color:
print("\033[1;31;40m{} [{}]\t{}\033[0m".format(current_time, levels[
level], message).encode("utf-8").decode("latin1"))
else:
print("{} [{}]\t{}".format(current_time, levels[level], message)
.encode("utf-8").decode("latin1"))
sys.stdout.flush()
def debug(message="", use_color=False):
log(level=3, message=message, use_color=use_color)
def info(message="", use_color=False):
log(level=2, message=message, use_color=use_color)
def warning(message="", use_color=True):
log(level=1, message=message, use_color=use_color)
def error(message="", use_color=True, exit=True):
log(level=0, message=message, use_color=use_color)
if exit:
sys.exit(-1)
# download pre-compiled opencv lib
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
if [ ! -d "./deps/opencv3gcc4.8" ]; then
mkdir -p deps
cd deps
wget -c ${OPENCV_URL}
tar xvfj opencv3gcc4.8.tar.bz2
rm -rf opencv3gcc4.8.tar.bz2
cd ..
fi
# openvino预编译库的路径
OPENVINO_DIR=/path/to/inference_engine/
# gflags预编译库的路径
GFLAGS_DIR=/path/to/gflags
# OpenVINO预编译库的路径
OPENVINO_DIR=$INTEL_OPENVINO_DIR/inference_engine
# ngraph lib的路径,编译openvino时通常会生成
NGRAPH_LIB=/path/to/ngraph/lib/
NGRAPH_LIB=$INTEL_OPENVINO_DIR/deployment_tools/ngraph/lib
# gflags预编译库的路径
GFLAGS_DIR=$(pwd)/deps/gflags
# glog预编译库的路径
GLOG_DIR=$(pwd)/deps/glog
# opencv使用自带预编译版本
OPENCV_DIR=$(pwd)/deps/opencv/
#cpu架构
ARCH=x86
export ARCH
# opencv预编译库的路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
# 下载自带预编译版本
sh $(pwd)/scripts/bootstrap.sh
#下载并编译third-part lib
sh $(pwd)/scripts/install_third-party.sh
rm -rf build
mkdir -p build
......@@ -16,6 +25,8 @@ cd build
cmake .. \
-DOPENCV_DIR=${OPENCV_DIR} \
-DGFLAGS_DIR=${GFLAGS_DIR} \
-DGLOG_DIR=${GLOG_DIR} \
-DOPENVINO_DIR=${OPENVINO_DIR} \
-DNGRAPH_LIB=${NGRAPH_LIB}
-DNGRAPH_LIB=${NGRAPH_LIB} \
-DARCH=${ARCH}
make
# download third-part lib
if [ ! -d "./deps" ]; then
mkdir deps
fi
if [ ! -d "./deps/gflag" ]; then
cd deps
git clone https://github.com/gflags/gflags
cd gflags
cmake .
make -j 8
cd ..
cd ..
fi
if [ ! -d "./deps/glog" ]; then
cd deps
git clone https://github.com/google/glog
sudo apt-get install autoconf automake libtool
cd glog
./autogen.sh
./configure
make -j 8
cd ..
cd ..
fi
if [ "$ARCH" = "x86" ]; then
OPENCV_URL=https://bj.bcebos.com/paddlex/deploy/x86opencv/opencv.tar.bz2
else
OPENCV_URL=https://bj.bcebos.com/paddlex/deploy/armopencv/opencv.tar.bz2
fi
if [ ! -d "./deps/opencv" ]; then
cd deps
wget -c ${OPENCV_URL}
tar xvfj opencv.tar.bz2
rm -rf opencv.tar.bz2
cd ..
fi
......@@ -13,6 +13,8 @@
// limitations under the License.
#include "include/paddlex/paddlex.h"
#include <iostream>
#include <fstream>
using namespace InferenceEngine;
......@@ -24,12 +26,28 @@ void Model::create_predictor(const std::string& model_dir,
Core ie;
network_ = ie.ReadNetwork(model_dir, model_dir.substr(0, model_dir.size() - 4) + ".bin");
network_.setBatchSize(1);
InputInfo::Ptr input_info = network_.getInputsInfo().begin()->second;
input_info->getPreProcess().setResizeAlgorithm(RESIZE_BILINEAR);
input_info->setLayout(Layout::NCHW);
input_info->setPrecision(Precision::FP32);
InputsDataMap inputInfo(network_.getInputsInfo());
std::string imageInputName;
for (const auto & inputInfoItem : inputInfo) {
if (inputInfoItem.second->getTensorDesc().getDims().size() == 4){
imageInputName = inputInfoItem.first;
inputInfoItem.second->setPrecision(Precision::FP32);
inputInfoItem.second->getPreProcess().setResizeAlgorithm(RESIZE_BILINEAR);
inputInfoItem.second->setLayout(Layout::NCHW);
}
if (inputInfoItem.second->getTensorDesc().getDims().size() == 2){
imageInputName = inputInfoItem.first;
inputInfoItem.second->setPrecision(Precision::FP32);
}
}
if(device == "MYRIAD"){
std::map<std::string, std::string> networkConfig;
networkConfig["VPU_HW_STAGES_OPTIMIZATION"] = "ON";
executable_network_ = ie.LoadNetwork(network_, device, networkConfig);
}else{
executable_network_ = ie.LoadNetwork(network_, device);
}
load_config(cfg_dir);
}
......@@ -49,21 +67,25 @@ bool Model::load_config(const std::string& cfg_dir) {
}
}
// 构建数据处理流
transforms_.Init(config["Transforms"], to_rgb);
// 读入label list
labels.clear();
labels = config["_Attributes"]["labels"].as<std::vector<std::string>>();
transforms_.Init(config["Transforms"], type, to_rgb);
// 读入label lis
for (const auto& item : config["_Attributes"]["labels"]) {
int index = labels.size();
labels[index] = item.as<std::string>();
}
return true;
}
bool Model::preprocess(cv::Mat* input_im) {
if (!transforms_.Run(input_im, inputs_)) {
bool Model::preprocess(cv::Mat* input_im, ImageBlob* inputs) {
if (!transforms_.Run(input_im, inputs)) {
return false;
}
return true;
}
bool Model::predict(const cv::Mat& im, ClsResult* result) {
inputs_.clear();
if (type == "detector") {
std::cerr << "Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
......@@ -78,16 +100,17 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
// 处理输入图像
InferRequest infer_request = executable_network_.CreateInferRequest();
std::string input_name = network_.getInputsInfo().begin()->first;
inputs_ = infer_request.GetBlob(input_name);
auto im_clone = im.clone();
if (!preprocess(&im_clone)) {
inputs_.blob = infer_request.GetBlob(input_name);
cv::Mat im_clone = im.clone();
if (!preprocess(&im_clone, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
infer_request.Infer();
std::string output_name = network_.getOutputsInfo().begin()->first;
output_ = infer_request.GetBlob(output_name);
MemoryBlob::CPtr moutput = as<MemoryBlob>(output_);
......@@ -99,10 +122,198 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
result->category_id = std::distance(outputs_data, ptr);
result->score = *ptr;
result->category = labels[result->category_id];
//for (int i=0;i<sizeof(outputs_data);i++){
// std::cout << labels[i] << std::endl;
// std::cout << outputs_[i] << std::endl;
// }
}
bool Model::predict(const cv::Mat& im, DetResult* result) {
inputs_.clear();
result->clear();
if (type == "classifier") {
std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!" << std::endl;
return false;
} else if (type == "segmenter") {
std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!" << std::endl;
return false;
}
InferRequest infer_request = executable_network_.CreateInferRequest();
InputsDataMap input_maps = network_.getInputsInfo();
std::string inputName;
for (const auto & input_map : input_maps) {
if (input_map.second->getTensorDesc().getDims().size() == 4){
inputName = input_map.first;
inputs_.blob = infer_request.GetBlob(inputName);
}
if (input_map.second->getTensorDesc().getDims().size() == 2){
inputName = input_map.first;
inputs_.ori_im_size_ = infer_request.GetBlob(inputName);
}
}
cv::Mat im_clone = im.clone();
if (!preprocess(&im_clone, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
infer_request.Infer();
OutputsDataMap out_map = network_.getOutputsInfo();
auto iter = out_map.begin();
std::string outputName = iter->first;
std::cout << "output: " << outputName << std::endl;
Blob::Ptr output = infer_request.GetBlob(outputName);
MemoryBlob::CPtr moutput = as<MemoryBlob>(output);
TensorDesc blob_output = moutput->getTensorDesc();
std::vector<size_t> output_shape = blob_output.getDims();
auto moutputHolder = moutput->rmap();
float* data = moutputHolder.as<float *>();
int size = 1;
for (auto& i : output_shape){
size *= static_cast<int>(i);
}
int num_boxes = size / 6;
for (int i = 0; i < num_boxes; ++i){
if(data[i * 6] > 0){
Box box;
box.category_id = static_cast<int>(data[i * 6]);
box.category = labels[box.category_id];
box.score = data[i * 6 + 1];
float xmin = data[i * 6 + 2];
float ymin = data[i * 6 + 3];
float xmax = data[i * 6 + 4];
float ymax = data[i * 6 + 5];
float w = xmax - xmin + 1;
float h = ymax - ymin + 1;
box.coordinate = {xmin, ymin, w, h};
result->boxes.push_back(std::move(box));
}
}
}
bool Model::predict(const cv::Mat& im, SegResult* result) {
result->clear();
inputs_.clear();
if (type == "classifier") {
std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!" << std::endl;
return false;
} else if (type == "detector") {
std::cerr << "Loading model is a 'detector', DetResult should be passed to "
"function predict()!" << std::endl;
return false;
}
//
InferRequest infer_request = executable_network_.CreateInferRequest();
std::string input_name = network_.getInputsInfo().begin()->first;
inputs_.blob = infer_request.GetBlob(input_name);
//
cv::Mat im_clone = im.clone();
if (!preprocess(&im_clone, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
//
infer_request.Infer();
if (count_num_ >= 20){
total_time_ = total_time_ + time_used.count();
}
OutputsDataMap out_map = network_.getOutputsInfo();
auto iter = out_map.begin();
iter++;
std::string output_name_score = iter->first;
std::cout << iter->first << std::endl;
Blob::Ptr output_score = infer_request.GetBlob(output_name_score);
MemoryBlob::CPtr moutput_score = as<MemoryBlob>(output_score);
TensorDesc blob_score = moutput_score->getTensorDesc();
std::vector<size_t> output_score_shape = blob_score.getDims();
int size = 1;
for (auto& i : output_score_shape) {
size *= static_cast<int>(i);
result->score_map.shape.push_back(static_cast<int>(i));
}
result->score_map.data.resize(size);
auto moutputHolder_score = moutput_score->rmap();
float* score_data = moutputHolder_score.as<float *>();
memcpy(result->score_map.data.data(),score_data,moutput_score->byteSize());
iter++;
std::string output_name_label = iter->first;
std::cout << iter->first << std::endl;
Blob::Ptr output_label = infer_request.GetBlob(output_name_label);
MemoryBlob::CPtr moutput_label = as<MemoryBlob>(output_label);
TensorDesc blob_label = moutput_label->getTensorDesc();
std::vector<size_t> output_label_shape = blob_label.getDims();
size = 1;
for (auto& i : output_label_shape) {
size *= static_cast<int>(i);
result->label_map.shape.push_back(static_cast<int>(i));
}
result->label_map.data.resize(size);
auto moutputHolder_label = moutput_label->rmap();
int* label_data = moutputHolder_label.as<int *>();
memcpy(result->label_map.data.data(),label_data,moutput_label->byteSize());
std::vector<uint8_t> label_map(result->label_map.data.begin(),
result->label_map.data.end());
cv::Mat mask_label(result->label_map.shape[1],
result->label_map.shape[2],
CV_8UC1,
label_map.data());
cv::Mat mask_score(result->score_map.shape[2],
result->score_map.shape[3],
CV_32FC1,
result->score_map.data.data());
int idx = 1;
int len_postprocess = inputs_.im_size_before_resize_.size();
for (std::vector<std::string>::reverse_iterator iter =
inputs_.reshape_order_.rbegin();
iter != inputs_.reshape_order_.rend();
++iter) {
if (*iter == "padding") {
auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
inputs_.im_size_before_resize_.pop_back();
auto padding_w = before_shape[0];
auto padding_h = before_shape[1];
mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
} else if (*iter == "resize") {
auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
inputs_.im_size_before_resize_.pop_back();
auto resize_w = before_shape[0];
auto resize_h = before_shape[1];
cv::resize(mask_label,
mask_label,
cv::Size(resize_h, resize_w),
0,
0,
cv::INTER_NEAREST);
cv::resize(mask_score,
mask_score,
cv::Size(resize_h, resize_w),
0,
0,
cv::INTER_LINEAR);
}
++idx;
}
result->label_map.data.assign(mask_label.begin<uint8_t>(),
mask_label.end<uint8_t>());
result->label_map.shape = {mask_label.rows, mask_label.cols};
result->score_map.data.assign(mask_score.begin<float>(),
mask_score.end<float>());
result->score_map.shape = {mask_score.rows, mask_score.cols};
return true;
}
} // namespce of PaddleX
......@@ -13,8 +13,10 @@
// limitations under the License.
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <math.h>
#include "include/paddlex/transforms.h"
......@@ -26,7 +28,7 @@ std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
{"CUBIC", cv::INTER_CUBIC},
{"LANCZOS4", cv::INTER_LANCZOS4}};
bool Normalize::Run(cv::Mat* im){
bool Normalize::Run(cv::Mat* im, ImageBlob* data){
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
......@@ -40,19 +42,6 @@ bool Normalize::Run(cv::Mat* im){
return true;
}
bool CenterCrop::Run(cv::Mat* im) {
int height = static_cast<int>(im->rows);
int width = static_cast<int>(im->cols);
if (height < height_ || width < width_) {
std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
return false;
}
int offset_x = static_cast<int>((width - width_) / 2);
int offset_y = static_cast<int>((height - height_) / 2);
cv::Rect crop_roi(offset_x, offset_y, width_, height_);
*im = (*im)(crop_roi);
return true;
}
float ResizeByShort::GenerateScale(const cv::Mat& im) {
......@@ -70,17 +59,117 @@ float ResizeByShort::GenerateScale(const cv::Mat& im) {
return scale;
}
bool ResizeByShort::Run(cv::Mat* im) {
bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("resize");
float scale = GenerateScale(*im);
int width = static_cast<int>(scale * im->cols);
int height = static_cast<int>(scale * im->rows);
int width = static_cast<int>(round(scale * im->cols));
int height = static_cast<int>(round(scale * im->rows));
cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
data->scale = scale;
return true;
}
void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
int height = static_cast<int>(im->rows);
int width = static_cast<int>(im->cols);
if (height < height_ || width < width_) {
std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
return false;
}
int offset_x = static_cast<int>((width - width_) / 2);
int offset_y = static_cast<int>((height - height_) / 2);
cv::Rect crop_roi(offset_x, offset_y, width_, height_);
*im = (*im)(crop_roi);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
bool Padding::Run(cv::Mat* im, ImageBlob* data) {
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("padding");
int padding_w = 0;
int padding_h = 0;
if (width_ > 1 & height_ > 1) {
padding_w = width_ - im->cols;
padding_h = height_ - im->rows;
} else if (coarsest_stride_ >= 1) {
int h = im->rows;
int w = im->cols;
padding_h =
ceil(h * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
padding_w =
ceil(w * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
}
if (padding_h < 0 || padding_w < 0) {
std::cerr << "[Padding] Computed padding_h=" << padding_h
<< ", padding_w=" << padding_w
<< ", but they should be greater than 0." << std::endl;
return false;
}
cv::Scalar value = cv::Scalar(im_value_[0], im_value_[1], im_value_[2]);
cv::copyMakeBorder(
*im, *im, 0, padding_h, 0, padding_w, cv::BORDER_CONSTANT, value);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
if (long_size_ <= 0) {
std::cerr << "[ResizeByLong] long_size should be greater than 0"
<< std::endl;
return false;
}
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("resize");
int origin_w = im->cols;
int origin_h = im->rows;
int im_size_max = std::max(origin_w, origin_h);
float scale =
static_cast<float>(long_size_) / static_cast<float>(im_size_max);
cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
data->scale = scale;
return true;
}
bool Resize::Run(cv::Mat* im, ImageBlob* data) {
if (width_ <= 0 || height_ <= 0) {
std::cerr << "[Resize] width and height should be greater than 0"
<< std::endl;
return false;
}
if (interpolations.count(interp_) <= 0) {
std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
<< std::endl;
return false;
}
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("resize");
cv::resize(
*im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
void Transforms::Init(const YAML::Node& transforms_node, std::string type, bool to_rgb) {
transforms_.clear();
to_rgb_ = to_rgb;
type_ = type;
for (const auto& item : transforms_node) {
std::string name = item.begin()->first.as<std::string>();
std::cout << "trans name: " << name << std::endl;
......@@ -94,10 +183,16 @@ std::shared_ptr<Transform> Transforms::CreateTransform(
const std::string& transform_name) {
if (transform_name == "Normalize") {
return std::make_shared<Normalize>();
} else if (transform_name == "CenterCrop") {
return std::make_shared<CenterCrop>();
} else if (transform_name == "ResizeByShort") {
return std::make_shared<ResizeByShort>();
} else if (transform_name == "CenterCrop") {
return std::make_shared<CenterCrop>();
} else if (transform_name == "Resize") {
return std::make_shared<Resize>();
} else if (transform_name == "Padding") {
return std::make_shared<Padding>();
} else if (transform_name == "ResizeByLong") {
return std::make_shared<ResizeByLong>();
} else {
std::cerr << "There's unexpected transform(name='" << transform_name
<< "')." << std::endl;
......@@ -105,15 +200,26 @@ std::shared_ptr<Transform> Transforms::CreateTransform(
}
}
bool Transforms::Run(cv::Mat* im, Blob::Ptr blob) {
bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
// 按照transforms中预处理算子顺序处理图像
if (to_rgb_) {
cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
}
(*im).convertTo(*im, CV_32FC3);
if(type_ == "detector" ){
LockedMemory<void> input2Mapped = as<MemoryBlob>(data->ori_im_size_)->wmap();
float *p = input2Mapped.as<float*>();
p[0] = im->rows;
p[1] = im->cols;
}
//data->ori_im_size_[0] = im->rows;
//data->ori_im_size_[1] = im->cols;
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
for (int i = 0; i < transforms_.size(); ++i) {
if (!transforms_[i]->Run(im)) {
if (!transforms_[i]->Run(im,data)) {
std::cerr << "Apply transforms to image failed!" << std::endl;
return false;
}
......@@ -121,13 +227,15 @@ bool Transforms::Run(cv::Mat* im, Blob::Ptr blob) {
// 将图像由NHWC转为NCHW格式
// 同时转为连续的内存块存储到Blob
SizeVector blobSize = blob->getTensorDesc().getDims();
SizeVector blobSize = data->blob->getTensorDesc().getDims();
const size_t width = blobSize[3];
const size_t height = blobSize[2];
const size_t channels = blobSize[1];
MemoryBlob::Ptr mblob = InferenceEngine::as<MemoryBlob>(blob);
MemoryBlob::Ptr mblob = InferenceEngine::as<MemoryBlob>(data->blob);
auto mblobHolder = mblob->wmap();
float *blob_data = mblobHolder.as<float *>();
for (size_t c = 0; c < channels; c++) {
for (size_t h = 0; h < height; h++) {
for (size_t w = 0; w < width; w++) {
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/paddlex/visualize.h"
namespace PaddleX {
std::vector<int> GenerateColorMap(int num_class) {
auto colormap = std::vector<int>(3 * num_class, 0);
for (int i = 0; i < num_class; ++i) {
int j = 0;
int lab = i;
while (lab) {
colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}
}
return colormap;
}
cv::Mat Visualize(const cv::Mat& img,
const DetResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap,
float threshold) {
cv::Mat vis_img = img.clone();
auto boxes = result.boxes;
for (int i = 0; i < boxes.size(); ++i) {
if (boxes[i].score < threshold) {
continue;
}
cv::Rect roi = cv::Rect(boxes[i].coordinate[0],
boxes[i].coordinate[1],
boxes[i].coordinate[2],
boxes[i].coordinate[3]);
// 生成预测框和标题
std::string text = boxes[i].category;
int c1 = colormap[3 * boxes[i].category_id + 0];
int c2 = colormap[3 * boxes[i].category_id + 1];
int c3 = colormap[3 * boxes[i].category_id + 2];
cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
text += std::to_string(static_cast<int>(boxes[i].score * 100)) + "%";
int font_face = cv::FONT_HERSHEY_SIMPLEX;
double font_scale = 0.5f;
float thickness = 0.5;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
cv::Point origin;
origin.x = roi.x;
origin.y = roi.y;
// 生成预测框标题的背景
cv::Rect text_back = cv::Rect(boxes[i].coordinate[0],
boxes[i].coordinate[1] - text_size.height,
text_size.width,
text_size.height);
// 绘图和文字
cv::rectangle(vis_img, roi, roi_color, 2);
cv::rectangle(vis_img, text_back, roi_color, -1);
cv::putText(vis_img,
text,
origin,
font_face,
font_scale,
cv::Scalar(255, 255, 255),
thickness);
// 生成实例分割mask
if (boxes[i].mask.data.size() == 0) {
continue;
}
cv::Mat bin_mask(result.mask_resolution,
result.mask_resolution,
CV_32FC1,
boxes[i].mask.data.data());
cv::resize(bin_mask,
bin_mask,
cv::Size(boxes[i].mask.shape[0], boxes[i].mask.shape[1]));
cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY);
cv::Mat full_mask = cv::Mat::zeros(vis_img.size(), CV_8UC1);
bin_mask.copyTo(full_mask(roi));
cv::Mat mask_ch[3];
mask_ch[0] = full_mask * c1;
mask_ch[1] = full_mask * c2;
mask_ch[2] = full_mask * c3;
cv::Mat mask;
cv::merge(mask_ch, 3, mask);
cv::addWeighted(vis_img, 1, mask, 0.5, 0, vis_img);
}
return vis_img;
}
cv::Mat Visualize(const cv::Mat& img,
const SegResult& result,
const std::map<int, std::string>& labels,
const std::vector<int>& colormap) {
std::vector<uint8_t> label_map(result.label_map.data.begin(),
result.label_map.data.end());
cv::Mat mask(result.label_map.shape[0],
result.label_map.shape[1],
CV_8UC1,
label_map.data());
cv::Mat color_mask = cv::Mat::zeros(
result.label_map.shape[0], result.label_map.shape[1], CV_8UC3);
int rows = img.rows;
int cols = img.cols;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
int category_id = static_cast<int>(mask.at<uchar>(i, j));
color_mask.at<cv::Vec3b>(i, j)[0] = colormap[3 * category_id + 0];
color_mask.at<cv::Vec3b>(i, j)[1] = colormap[3 * category_id + 1];
color_mask.at<cv::Vec3b>(i, j)[2] = colormap[3 * category_id + 2];
}
}
return color_mask;
}
std::string generate_save_path(const std::string& save_dir,
const std::string& file_path) {
if (access(save_dir.c_str(), 0) < 0) {
#ifdef _WIN32
mkdir(save_dir.c_str());
#else
if (mkdir(save_dir.c_str(), S_IRWXU) < 0) {
std::cerr << "Fail to create " << save_dir << "directory." << std::endl;
}
#endif
}
int pos = file_path.find_last_of(OS_PATH_SEP);
std::string image_name(file_path.substr(pos + 1));
return save_dir + OS_PATH_SEP + image_name;
}
} // namespace PaddleX
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册