diff --git a/docs/train/images/deeplab_predict.jpg b/docs/train/images/deeplab_predict.jpg index bb71b963724e99de8a75509b311d301a50b003e4..8b4b6c00a35f2183f0de7ed7eed9e93e5fb60edb 100644 Binary files a/docs/train/images/deeplab_predict.jpg and b/docs/train/images/deeplab_predict.jpg differ diff --git a/docs/train/prediction.md b/docs/train/prediction.md index d5b00ecdda263bc883f87020d937561264c09470..977a93d4a55b31f3a842bd37cb65e0bcafad9548 100644 --- a/docs/train/prediction.md +++ b/docs/train/prediction.md @@ -77,7 +77,8 @@ import paddlex as pdx test_jpg = './deeplabv3p_mobilenetv2_voc/test.jpg' model = pdx.load_model('./deeplabv3p_mobilenetv2_voc') result = model.predict(test_jpg) -pdx.seg.visualize(test_jpg, result, weight=0.6, save_dir='./') +# 可视化结果存储在./visualized_test.jpg,见下图右(左图为原图) +pdx.seg.visualize(test_jpg, result, weight=0.0, save_dir='./') ``` 在上述示例代码中,通过调用`paddlex.seg.visualize`可以对语义分割的预测结果进行可视化,可视化的结果保存在`save_dir`下,见下图。其中`weight`参数用于调整预测结果和原图结果融合展现时的权重,0.0时只展示预测结果mask的可视化,1.0时只展示原图可视化。