提交 6e5eecd7 编写于 作者: F FlyingQianMM

rename input_channel to input_channel_

上级 ea94deb9
...@@ -233,6 +233,6 @@ class Model { ...@@ -233,6 +233,6 @@ class Model {
// a predictor which run the model predicting // a predictor which run the model predicting
std::unique_ptr<paddle::PaddlePredictor> predictor_; std::unique_ptr<paddle::PaddlePredictor> predictor_;
// input channel // input channel
int input_channel; int input_channel_;
}; };
} // namespace PaddleX } // namespace PaddleX
...@@ -135,9 +135,9 @@ bool Model::load_config(const std::string& yaml_input) { ...@@ -135,9 +135,9 @@ bool Model::load_config(const std::string& yaml_input) {
labels[index] = item.as<std::string>(); labels[index] = item.as<std::string>();
} }
if (config["_init_params"]["input_channel"].IsDefined()) { if (config["_init_params"]["input_channel"].IsDefined()) {
input_channel = config["_init_params"]["input_channel"].as<int>(); input_channel_ = config["_init_params"]["input_channel"].as<int>();
} else { } else {
input_channel = 3; input_channel_ = 3;
} }
return true; return true;
} }
...@@ -184,7 +184,7 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) { ...@@ -184,7 +184,7 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
auto in_tensor = predictor_->GetInputTensor("image"); auto in_tensor = predictor_->GetInputTensor("image");
int h = inputs_.new_im_size_[0]; int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1]; int w = inputs_.new_im_size_[1];
in_tensor->Reshape({1, input_channel, h, w}); in_tensor->Reshape({1, input_channel_, h, w});
in_tensor->copy_from_cpu(inputs_.im_data_.data()); in_tensor->copy_from_cpu(inputs_.im_data_.data());
predictor_->ZeroCopyRun(); predictor_->ZeroCopyRun();
// get result // get result
...@@ -231,12 +231,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch, ...@@ -231,12 +231,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
auto in_tensor = predictor_->GetInputTensor("image"); auto in_tensor = predictor_->GetInputTensor("image");
int h = inputs_batch_[0].new_im_size_[0]; int h = inputs_batch_[0].new_im_size_[0];
int w = inputs_batch_[0].new_im_size_[1]; int w = inputs_batch_[0].new_im_size_[1];
in_tensor->Reshape({batch_size, input_channel, h, w}); in_tensor->Reshape({batch_size, input_channel_, h, w});
std::vector<float> inputs_data(batch_size * input_channel * h * w); std::vector<float> inputs_data(batch_size * input_channel_ * h * w);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
std::copy(inputs_batch_[i].im_data_.begin(), std::copy(inputs_batch_[i].im_data_.begin(),
inputs_batch_[i].im_data_.end(), inputs_batch_[i].im_data_.end(),
inputs_data.begin() + i * input_channel * h * w); inputs_data.begin() + i * input_channel_ * h * w);
} }
in_tensor->copy_from_cpu(inputs_data.data()); in_tensor->copy_from_cpu(inputs_data.data());
// in_tensor->copy_from_cpu(inputs_.im_data_.data()); // in_tensor->copy_from_cpu(inputs_.im_data_.data());
...@@ -290,7 +290,7 @@ bool Model::predict(const cv::Mat& im, DetResult* result) { ...@@ -290,7 +290,7 @@ bool Model::predict(const cv::Mat& im, DetResult* result) {
int h = inputs_.new_im_size_[0]; int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1]; int w = inputs_.new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({1, input_channel, h, w}); im_tensor->Reshape({1, input_channel_, h, w});
im_tensor->copy_from_cpu(inputs_.im_data_.data()); im_tensor->copy_from_cpu(inputs_.im_data_.data());
if (name == "YOLOv3" || name == "PPYOLO") { if (name == "YOLOv3" || name == "PPYOLO") {
...@@ -444,12 +444,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch, ...@@ -444,12 +444,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
int h = inputs_batch_[0].new_im_size_[0]; int h = inputs_batch_[0].new_im_size_[0];
int w = inputs_batch_[0].new_im_size_[1]; int w = inputs_batch_[0].new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({batch_size, input_channel, h, w}); im_tensor->Reshape({batch_size, input_channel_, h, w});
std::vector<float> inputs_data(batch_size * input_channel * h * w); std::vector<float> inputs_data(batch_size * input_channel_ * h * w);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
std::copy(inputs_batch_[i].im_data_.begin(), std::copy(inputs_batch_[i].im_data_.begin(),
inputs_batch_[i].im_data_.end(), inputs_batch_[i].im_data_.end(),
inputs_data.begin() + i * input_channel * h * w); inputs_data.begin() + i * input_channel_ * h * w);
} }
im_tensor->copy_from_cpu(inputs_data.data()); im_tensor->copy_from_cpu(inputs_data.data());
if (name == "YOLOv3" || name == "PPYOLO") { if (name == "YOLOv3" || name == "PPYOLO") {
...@@ -589,7 +589,7 @@ bool Model::predict(const cv::Mat& im, SegResult* result) { ...@@ -589,7 +589,7 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
int h = inputs_.new_im_size_[0]; int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1]; int w = inputs_.new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({1, input_channel, h, w}); im_tensor->Reshape({1, input_channel_, h, w});
im_tensor->copy_from_cpu(inputs_.im_data_.data()); im_tensor->copy_from_cpu(inputs_.im_data_.data());
// predict // predict
...@@ -703,12 +703,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch, ...@@ -703,12 +703,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
int h = inputs_batch_[0].new_im_size_[0]; int h = inputs_batch_[0].new_im_size_[0];
int w = inputs_batch_[0].new_im_size_[1]; int w = inputs_batch_[0].new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({batch_size, input_channel, h, w}); im_tensor->Reshape({batch_size, input_channel_, h, w});
std::vector<float> inputs_data(batch_size * input_channel * h * w); std::vector<float> inputs_data(batch_size * input_channel_ * h * w);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
std::copy(inputs_batch_[i].im_data_.begin(), std::copy(inputs_batch_[i].im_data_.begin(),
inputs_batch_[i].im_data_.end(), inputs_batch_[i].im_data_.end(),
inputs_data.begin() + i * input_channel * h * w); inputs_data.begin() + i * input_channel_ * h * w);
} }
im_tensor->copy_from_cpu(inputs_data.data()); im_tensor->copy_from_cpu(inputs_data.data());
// im_tensor->copy_from_cpu(inputs_.im_data_.data()); // im_tensor->copy_from_cpu(inputs_.im_data_.data());
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册