提交 6a89ed13 编写于 作者: J jiangjiajun

fix scope problem for slim

上级 6ad35c9a
......@@ -104,7 +104,7 @@ def sensitivity(program,
return sensitivities
def channel_prune(program, prune_names, prune_ratios, place, only_graph=False):
def channel_prune(program, prune_names, prune_ratios, place, only_graph=False, scope=None):
"""通道裁剪。
Args:
......@@ -134,6 +134,7 @@ def channel_prune(program, prune_names, prune_ratios, place, only_graph=False):
pruned_num = int(round(origin_num * (ratio)))
prune_ratios[index] = ratio
index += 1
if scope is None:
scope = fluid.global_scope()
pruner = Pruner()
program, _, _ = pruner.prune(
......@@ -175,12 +176,12 @@ def prune_program(model, prune_params_ratios=None):
prune_params_ratios[prune_name] for prune_name in prune_names
]
model.train_prog = channel_prune(train_prog, prune_names, prune_ratios,
place)
place, scope=model.scope)
model.test_prog = channel_prune(
eval_prog, prune_names, prune_ratios, place, only_graph=True)
eval_prog, prune_names, prune_ratios, place, only_graph=True, scope=model.scope)
def update_program(program, model_dir, place):
def update_program(program, model_dir, place, scope=None):
"""根据裁剪信息更新Program和参数。
Args:
......@@ -197,10 +198,12 @@ def update_program(program, model_dir, place):
shapes = yaml.load(f.read(), Loader=yaml.Loader)
for param, shape in shapes.items():
graph.var(param).set_shape(shape)
if scope is None:
scope = fluid.global_scope()
for block in program.blocks:
for param in block.all_parameters():
if param.name in shapes:
param_tensor = fluid.global_scope().find_var(
param_tensor = scope.find_var(
param.name).get_tensor()
param_tensor.set(
np.zeros(list(shapes[param.name])).astype('float32'),
......@@ -293,7 +296,7 @@ def get_params_ratios(sensitivities_file, eval_metric_loss=0.05):
return params_ratios
def cal_model_size(program, place, sensitivities_file, eval_metric_loss=0.05):
def cal_model_size(program, place, sensitivities_file, eval_metric_loss=0.05, scope=None):
"""在可容忍的精度损失下,计算裁剪后模型大小相对于当前模型大小的比例。
Args:
......@@ -326,7 +329,8 @@ def cal_model_size(program, place, sensitivities_file, eval_metric_loss=0.05):
list(prune_params_ratios.keys()),
list(prune_params_ratios.values()),
place,
only_graph=True)
only_graph=True,
scope=scope)
origin_size = 0
new_size = 0
for var in program.list_vars():
......
......@@ -171,10 +171,14 @@ def get_prune_params(model):
model_type.startswith('ShuffleNetV2'):
for block in program.blocks:
for param in block.all_parameters():
pd_var = fluid.global_scope().find_var(param.name)
pd_var = model.scope.find_var(param.name)
try:
pd_param = pd_var.get_tensor()
if len(np.array(pd_param).shape) == 4:
prune_names.append(param.name)
except Exception as e:
print("None Tensor Name: ", param.name)
print("Error message: {}".format(e))
if model_type == 'AlexNet':
prune_names.remove('conv5_weights')
if model_type == 'ShuffleNetV2':
......@@ -285,11 +289,35 @@ def get_prune_params(model):
prune_names.remove(i)
elif model_type.startswith('DeepLabv3p'):
if model_type.lower() == "deeplabv3p_mobilenetv3_large_x1_0_ssld":
params_not_prune = [
'last_1x1_conv_weights', 'conv14_se_2_weights',
'conv16_depthwise_weights', 'conv13_depthwise_weights',
'conv15_se_2_weights', 'conv2_depthwise_weights',
'conv6_depthwise_weights', 'conv8_depthwise_weights',
'fc_weights', 'conv3_depthwise_weights', 'conv7_se_2_weights',
'conv16_expand_weights', 'conv16_se_2_weights',
'conv10_depthwise_weights', 'conv11_depthwise_weights',
'conv15_expand_weights', 'conv5_expand_weights',
'conv15_depthwise_weights', 'conv14_depthwise_weights',
'conv12_se_2_weights', 'conv1_weights',
'conv13_expand_weights', 'conv_last_weights',
'conv12_depthwise_weights', 'conv13_se_2_weights',
'conv12_expand_weights', 'conv5_depthwise_weights',
'conv6_se_2_weights', 'conv10_expand_weights',
'conv9_depthwise_weights', 'conv6_expand_weights',
'conv5_se_2_weights', 'conv14_expand_weights',
'conv4_depthwise_weights', 'conv7_expand_weights',
'conv7_depthwise_weights'
]
for param in program.global_block().all_parameters():
if 'weight' not in param.name:
continue
if 'dwise' in param.name or 'depthwise' in param.name or 'logit' in param.name:
continue
if model_type.lower() == "deeplabv3p_mobilenetv3_large_x1_0_ssld":
if param.name in params_not_prune:
continue
prune_names.append(param.name)
params_not_prune = [
'xception_{}/exit_flow/block2/separable_conv3/pointwise/weights'.
......
......@@ -42,7 +42,7 @@ def visualize(model, sensitivities_file, save_dir='./'):
y = list()
for loss_thresh in tqdm.tqdm(list(np.arange(0.05, 1, 0.05))):
prune_ratio = 1 - cal_model_size(
program, place, sensitivities_file, eval_metric_loss=loss_thresh)
program, place, sensitivities_file, eval_metric_loss=loss_thresh, scope=model.scope)
x.append(prune_ratio)
y.append(loss_thresh)
plt.plot(x, y, color='green', linewidth=0.5, marker='o', markersize=3)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册