diff --git a/tutorials/train/detection/test.py b/tutorials/train/detection/test.py deleted file mode 100644 index cf6d4a9294a70f120f5febb41b2950d2fdf8449b..0000000000000000000000000000000000000000 --- a/tutorials/train/detection/test.py +++ /dev/null @@ -1,39 +0,0 @@ -import os -os.environ['CUDA_VISIBLE_DEVICES'] = '0' -from paddlex.det import transforms -import paddlex as pdx - -# 定义训练和验证时的transforms -train_transforms = transforms.ComposedRCNNTransforms( - mode='train', min_max_size=[600, 1000]) -eval_transforms = transforms.ComposedRCNNTransforms( - mode='eval', min_max_size=[600, 1000]) - -# 定义训练所用的数据集 -train_dataset = pdx.datasets.CocoDetection( - data_dir='jinnan2_round1_train_20190305/restricted/', - ann_file='jinnan2_round1_train_20190305/train.json', - transforms=train_transforms, - shuffle=True, - num_workers=2) -# 训练集中加入无目标背景图片 -train_dataset.add_negative_samples( - 'jinnan2_round1_train_20190305/normal_train_back/') - -# 定义验证所用的数据集 -eval_dataset = pdx.datasets.CocoDetection( - data_dir='jinnan2_round1_train_20190305/restricted/', - ann_file='jinnan2_round1_train_20190305/val.json', - transforms=eval_transforms, - num_workers=2) - -# 初始化模型,并进行训练 -model = pdx.det.FasterRCNN(num_classes=len(train_dataset.labels) + 1) -model.train( - num_epochs=17, - train_dataset=train_dataset, - eval_dataset=eval_dataset, - train_batch_size=8, - learning_rate=0.01, - lr_decay_epochs=[13, 16], - save_dir='./output')