提交 03eb1be1 编写于 作者: F FlyingQianMM

new ppyolo class

上级 6a4bfdaf
...@@ -26,6 +26,7 @@ ResNet50 = models.ResNet50 ...@@ -26,6 +26,7 @@ ResNet50 = models.ResNet50
DarkNet53 = models.DarkNet53 DarkNet53 = models.DarkNet53
# detection # detection
YOLOv3 = models.YOLOv3 YOLOv3 = models.YOLOv3
PPYOLO = models.PPYOLO
#EAST = models.EAST #EAST = models.EAST
FasterRCNN = models.FasterRCNN FasterRCNN = models.FasterRCNN
MaskRCNN = models.MaskRCNN MaskRCNN = models.MaskRCNN
......
...@@ -38,6 +38,7 @@ from .classifier import HRNet_W18 ...@@ -38,6 +38,7 @@ from .classifier import HRNet_W18
from .classifier import AlexNet from .classifier import AlexNet
from .base import BaseAPI from .base import BaseAPI
from .yolo_v3 import YOLOv3 from .yolo_v3 import YOLOv3
from .ppyolo import PPYOLO
from .faster_rcnn import FasterRCNN from .faster_rcnn import FasterRCNN
from .mask_rcnn import MaskRCNN from .mask_rcnn import MaskRCNN
from .unet import UNet from .unet import UNet
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import math
import tqdm
import os.path as osp
import numpy as np
from multiprocessing.pool import ThreadPool
import paddle.fluid as fluid
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.optimizer import ExponentialMovingAverage
import paddlex.utils.logging as logging
import paddlex
import copy
from paddlex.cv.transforms import arrange_transforms
from paddlex.cv.datasets import generate_minibatch
from .base import BaseAPI
from collections import OrderedDict
from .utils.detection_eval import eval_results, bbox2out
class PPYOLO(BaseAPI):
"""构建PPYOLO,并实现其训练、评估、预测和模型导出。
Args:
num_classes (int): 类别数。默认为80。
backbone (str): PPYOLO的backbone网络,取值范围为['ResNet50_vd']。默认为'ResNet50_vd'。
anchors (list|tuple): anchor框的宽度和高度,为None时表示使用默认值
[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]。
anchor_masks (list|tuple): 在计算PPYOLO损失时,使用anchor的mask索引,为None时表示使用默认值
[[6, 7, 8], [3, 4, 5], [0, 1, 2]]。
ignore_threshold (float): 在计算PPYOLO损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。
nms_score_threshold (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。
nms_topk (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。
nms_keep_topk (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。
nms_iou_threshold (float): 进行NMS时,用于剔除检测框IOU的阈值。默认为0.45。
label_smooth (bool): 是否使用label smooth。默认值为False。
train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
"""
def __init__(
self,
num_classes=80,
backbone='ResNet50_vd',
with_dcn_v2=True,
# YOLO Head
anchors=None,
anchor_masks=None,
use_coord_conv=True,
use_iou_aware=True,
use_spp=True,
use_drop_block=True,
scale_x_y=1.05,
# PPYOLO Loss
ignore_threshold=0.7,
label_smooth=False,
use_iou_loss=True,
# NMS
use_matrix_nms=True,
nms_score_threshold=0.01,
nms_topk=1000,
nms_keep_topk=100,
nms_iou_threshold=0.45,
train_random_shapes=[
320, 352, 384, 416, 448, 480, 512, 544, 576, 608
]):
self.init_params = locals()
super(PPYOLO, self).__init__('detector')
backbones = ['ResNet50_vd']
assert backbone in backbones, "backbone should be one of {}".format(
backbones)
self.backbone = backbone
self.num_classes = num_classes
self.anchors = anchors
self.anchor_masks = anchor_masks
if anchors is None:
self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
if anchor_masks is None:
self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
self.ignore_threshold = ignore_threshold
self.nms_score_threshold = nms_score_threshold
self.nms_topk = nms_topk
self.nms_keep_topk = nms_keep_topk
self.nms_iou_threshold = nms_iou_threshold
self.label_smooth = label_smooth
self.sync_bn = True
self.train_random_shapes = train_random_shapes
self.fixed_input_shape = None
self.use_fine_grained_loss = False
if use_coord_conv or use_iou_aware or use_spp or use_drop_block or use_iou_loss:
self.use_fine_grained_loss = True
self.use_coord_conv = use_coord_conv
self.use_iou_aware = use_iou_aware
self.use_spp = use_spp
self.use_drop_block = use_drop_block
self.use_iou_loss = use_iou_loss
self.scale_x_y = scale_x_y
self.max_height = 608
self.max_width = 608
self.use_matrix_nms = use_matrix_nms
self.use_ema = False
self.with_dcn_v2 = with_dcn_v2
def _get_backbone(self, backbone_name):
if backbone_name == 'ResNet50_vd':
backbone = paddlex.cv.nets.ResNet(
norm_type='sync_bn',
layers=50,
freeze_norm=False,
norm_decay=0.,
feature_maps=[3, 4, 5],
freeze_at=0,
variant='d',
dcn_v2_stages=[5] if self.with_dcn_v2 else [])
return backbone
def build_net(self, mode='train'):
model = paddlex.cv.nets.detection.YOLOv3(
backbone=self._get_backbone(self.backbone),
num_classes=self.num_classes,
mode=mode,
anchors=self.anchors,
anchor_masks=self.anchor_masks,
ignore_threshold=self.ignore_threshold,
label_smooth=self.label_smooth,
nms_score_threshold=self.nms_score_threshold,
nms_topk=self.nms_topk,
nms_keep_topk=self.nms_keep_topk,
nms_iou_threshold=self.nms_iou_threshold,
fixed_input_shape=self.fixed_input_shape,
coord_conv=self.use_coord_conv,
iou_aware=self.use_iou_aware,
scale_x_y=self.scale_x_y,
spp=self.use_spp,
drop_block=self.use_drop_block,
use_matrix_nms=self.use_matrix_nms,
use_fine_grained_loss=self.use_fine_grained_loss,
use_iou_loss=self.use_iou_loss,
batch_size=self.batch_size_per_gpu
if hasattr(self, 'batch_size_per_gpu') else 8)
if mode == 'train' and self.use_iou_loss or self.use_iou_aware:
model.max_height = self.max_height
model.max_width = self.max_width
inputs = model.generate_inputs()
model_out = model.build_net(inputs)
outputs = OrderedDict([('bbox', model_out)])
if mode == 'train':
self.optimizer.minimize(model_out)
outputs = OrderedDict([('loss', model_out)])
if self.use_ema:
global_steps = _decay_step_counter()
self.ema = ExponentialMovingAverage(
self.ema_decay, thres_steps=global_steps)
self.ema.update()
return inputs, outputs
def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
lr_decay_epochs, lr_decay_gamma,
num_steps_each_epoch):
if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
logging.error(
"In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
exit=False)
logging.error(
"See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
exit=False)
logging.error(
"warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps
// num_steps_each_epoch))
boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
values = [(lr_decay_gamma**i) * learning_rate
for i in range(len(lr_decay_epochs) + 1)]
lr_decay = fluid.layers.piecewise_decay(
boundaries=boundaries, values=values)
lr_warmup = fluid.layers.linear_lr_warmup(
learning_rate=lr_decay,
warmup_steps=warmup_steps,
start_lr=warmup_start_lr,
end_lr=learning_rate)
optimizer = fluid.optimizer.Momentum(
learning_rate=lr_warmup,
momentum=0.9,
regularization=fluid.regularizer.L2DecayRegularizer(5e-04))
return optimizer
def train(self,
num_epochs,
train_dataset,
train_batch_size=8,
eval_dataset=None,
save_interval_epochs=20,
log_interval_steps=2,
save_dir='output',
pretrain_weights='IMAGENET',
optimizer=None,
learning_rate=1.0 / 8000,
warmup_steps=1000,
warmup_start_lr=0.0,
lr_decay_epochs=[213, 240],
lr_decay_gamma=0.1,
metric=None,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05,
early_stop=False,
early_stop_patience=5,
resume_checkpoint=None,
use_ema=True,
ema_decay=0.9998):
"""训练。
Args:
num_epochs (int): 训练迭代轮数。
train_dataset (paddlex.datasets): 训练数据读取器。
train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡
数量之商为验证数据batch大小。默认值为8。
eval_dataset (paddlex.datasets): 验证数据读取器。
save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为20。
log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为10。
save_dir (str): 模型保存路径。默认值为'output'。
pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',
则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
learning_rate (float): 默认优化器的学习率。默认为1.0/8000。
warmup_steps (int): 默认优化器进行warmup过程的步数。默认为1000。
warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为0.0。
lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。
lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
Raises:
ValueError: 评估类型不在指定列表中。
ValueError: 模型从inference model进行加载。
"""
if not self.trainable:
raise ValueError("Model is not trainable from load_model method.")
if metric is None:
if isinstance(train_dataset, paddlex.datasets.CocoDetection):
metric = 'COCO'
elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
isinstance(train_dataset, paddlex.datasets.EasyDataDet):
metric = 'VOC'
else:
raise ValueError(
"train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
)
assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
self.metric = metric
self.labels = train_dataset.labels
# 构建训练网络
if optimizer is None:
# 构建默认的优化策略
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
optimizer = self.default_optimizer(
learning_rate=learning_rate,
warmup_steps=warmup_steps,
warmup_start_lr=warmup_start_lr,
lr_decay_epochs=lr_decay_epochs,
lr_decay_gamma=lr_decay_gamma,
num_steps_each_epoch=num_steps_each_epoch)
self.optimizer = optimizer
self.use_ema = use_ema
self.ema_decay = ema_decay
self.batch_size_per_gpu = int(train_batch_size /
paddlex.env_info['num'])
if self.use_fine_grained_loss:
for transform in train_dataset.transforms.transforms:
if isinstance(transform, paddlex.det.transforms.Resize):
self.max_height = transform.target_size
self.max_width = transform.target_size
break
if train_dataset.transforms.batch_transforms is None:
train_dataset.transforms.batch_transforms = list()
define_random_shape = False
for bt in train_dataset.transforms.batch_transforms:
if isinstance(bt, paddlex.det.transforms.BatchRandomShape):
define_random_shape = True
if not define_random_shape:
if isinstance(self.train_random_shapes,
(list, tuple)) and len(self.train_random_shapes) > 0:
train_dataset.transforms.batch_transforms.append(
paddlex.det.transforms.BatchRandomShape(
random_shapes=self.train_random_shapes))
if self.use_fine_grained_loss:
self.max_height = max(self.max_height,
max(self.train_random_shapes))
self.max_width = max(self.max_width,
max(self.train_random_shapes))
if self.use_fine_grained_loss:
define_generate_target = False
for bt in train_dataset.transforms.batch_transforms:
if isinstance(bt, paddlex.det.transforms.GenerateYoloTarget):
define_generate_target = True
if not define_generate_target:
train_dataset.transforms.batch_transforms.append(
paddlex.det.transforms.GenerateYoloTarget(
anchors=self.anchors,
anchor_masks=self.anchor_masks,
num_classes=self.num_classes,
downsample_ratios=[32, 16, 8]))
# 构建训练、验证、预测网络
self.build_program()
# 初始化网络权重
self.net_initialize(
startup_prog=fluid.default_startup_program(),
pretrain_weights=pretrain_weights,
save_dir=save_dir,
sensitivities_file=sensitivities_file,
eval_metric_loss=eval_metric_loss,
resume_checkpoint=resume_checkpoint)
# 训练
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
batch_size=1,
epoch_id=None,
metric=None,
return_details=False):
"""评估。
Args:
eval_dataset (paddlex.datasets): 验证数据读取器。
batch_size (int): 验证数据批大小。默认为1。
epoch_id (int): 当前评估模型所在的训练轮数。
metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
如为COCODetection,则metric为'COCO'。
return_details (bool): 是否返回详细信息。
Returns:
tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details),
当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
"""
arrange_transforms(
model_type=self.model_type,
class_name=self.__class__.__name__,
transforms=eval_dataset.transforms,
mode='eval')
if metric is None:
if hasattr(self, 'metric') and self.metric is not None:
metric = self.metric
else:
if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
metric = 'COCO'
elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
metric = 'VOC'
else:
raise Exception(
"eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
)
assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
results = list()
data_generator = eval_dataset.generator(
batch_size=batch_size, drop_last=False)
logging.info(
"Start to evaluating(total_samples={}, total_steps={})...".format(
eval_dataset.num_samples, total_steps))
for step, data in tqdm.tqdm(
enumerate(data_generator()), total=total_steps):
images = np.array([d[0] for d in data])
im_sizes = np.array([d[1] for d in data])
feed_data = {'image': images, 'im_size': im_sizes}
with fluid.scope_guard(self.scope):
outputs = self.exe.run(
self.test_prog,
feed=[feed_data],
fetch_list=list(self.test_outputs.values()),
return_numpy=False)
res = {
'bbox': (np.array(outputs[0]),
outputs[0].recursive_sequence_lengths())
}
res_id = [np.array([d[2]]) for d in data]
res['im_id'] = (res_id, [])
if metric == 'VOC':
res_gt_box = [d[3].reshape(-1, 4) for d in data]
res_gt_label = [d[4].reshape(-1, 1) for d in data]
res_is_difficult = [d[5].reshape(-1, 1) for d in data]
res_id = [np.array([d[2]]) for d in data]
res['gt_box'] = (res_gt_box, [])
res['gt_label'] = (res_gt_label, [])
res['is_difficult'] = (res_is_difficult, [])
results.append(res)
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
1, total_steps))
box_ap_stats, eval_details = eval_results(
results, metric, eval_dataset.coco_gt, with_background=False)
evaluate_metrics = OrderedDict(
zip(['bbox_mmap'
if metric == 'COCO' else 'bbox_map'], box_ap_stats))
if return_details:
return evaluate_metrics, eval_details
return evaluate_metrics
@staticmethod
def _preprocess(images, transforms, model_type, class_name, thread_num=1):
arrange_transforms(
model_type=model_type,
class_name=class_name,
transforms=transforms,
mode='test')
pool = ThreadPool(thread_num)
batch_data = pool.map(transforms, images)
pool.close()
pool.join()
padding_batch = generate_minibatch(batch_data)
im = np.array(
[data[0] for data in padding_batch],
dtype=padding_batch[0][0].dtype)
im_size = np.array([data[1] for data in padding_batch], dtype=np.int32)
return im, im_size
@staticmethod
def _postprocess(res, batch_size, num_classes, labels):
clsid2catid = dict({i: i for i in range(num_classes)})
xywh_results = bbox2out([res], clsid2catid)
preds = [[] for i in range(batch_size)]
for xywh_res in xywh_results:
image_id = xywh_res['image_id']
del xywh_res['image_id']
xywh_res['category'] = labels[xywh_res['category_id']]
preds[image_id].append(xywh_res)
return preds
def predict(self, img_file, transforms=None):
"""预测。
Args:
img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
transforms (paddlex.det.transforms): 数据预处理操作。
Returns:
list: 预测结果列表,每个预测结果由预测框类别标签、
预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if isinstance(img_file, (str, np.ndarray)):
images = [img_file]
else:
raise Exception("img_file must be str/np.ndarray")
if transforms is None:
transforms = self.test_transforms
im, im_size = PPYOLO._preprocess(images, transforms, self.model_type,
self.__class__.__name__)
with fluid.scope_guard(self.scope):
result = self.exe.run(self.test_prog,
feed={'image': im,
'im_size': im_size},
fetch_list=list(self.test_outputs.values()),
return_numpy=False,
use_program_cache=True)
res = {
k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(list(self.test_outputs.keys()), result)
}
res['im_id'] = (np.array(
[[i] for i in range(len(images))]).astype('int32'), [[]])
preds = PPYOLO._postprocess(res,
len(images), self.num_classes, self.labels)
return preds[0]
def batch_predict(self, img_file_list, transforms=None, thread_num=2):
"""预测。
Args:
img_file_list (list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径,也可以是解码后的排列格式为(H,W,C)
且类型为float32且为BGR格式的数组。
transforms (paddlex.det.transforms): 数据预处理操作。
thread_num (int): 并发执行各图像预处理时的线程数。
Returns:
list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、
预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if not isinstance(img_file_list, (list, tuple)):
raise Exception("im_file must be list/tuple")
if transforms is None:
transforms = self.test_transforms
im, im_size = PPYOLO._preprocess(img_file_list, transforms,
self.model_type,
self.__class__.__name__, thread_num)
with fluid.scope_guard(self.scope):
result = self.exe.run(self.test_prog,
feed={'image': im,
'im_size': im_size},
fetch_list=list(self.test_outputs.values()),
return_numpy=False,
use_program_cache=True)
res = {
k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(list(self.test_outputs.keys()), result)
}
res['im_id'] = (np.array(
[[i] for i in range(len(img_file_list))]).astype('int32'), [[]])
preds = PPYOLO._postprocess(res,
len(img_file_list), self.num_classes,
self.labels)
return preds
...@@ -15,23 +15,11 @@ ...@@ -15,23 +15,11 @@
from __future__ import absolute_import from __future__ import absolute_import
import math import math
import tqdm import tqdm
import os.path as osp
import numpy as np
from multiprocessing.pool import ThreadPool
import paddle.fluid as fluid
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.optimizer import ExponentialMovingAverage
import paddlex.utils.logging as logging
import paddlex import paddlex
import copy from .ppyolo import PPYOLO
from paddlex.cv.transforms import arrange_transforms
from paddlex.cv.datasets import generate_minibatch
from .base import BaseAPI
from collections import OrderedDict
from .utils.detection_eval import eval_results, bbox2out
class YOLOv3(BaseAPI): class YOLOv3(PPYOLO):
"""构建YOLOv3,并实现其训练、评估、预测和模型导出。 """构建YOLOv3,并实现其训练、评估、预测和模型导出。
Args: Args:
...@@ -52,49 +40,31 @@ class YOLOv3(BaseAPI): ...@@ -52,49 +40,31 @@ class YOLOv3(BaseAPI):
train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。 train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
""" """
def __init__( def __init__(self,
self, num_classes=80,
num_classes=80, backbone='MobileNetV1',
backbone='MobileNetV1', anchors=None,
with_dcn_v2=False, anchor_masks=None,
# YOLO Head ignore_threshold=0.7,
anchors=None, nms_score_threshold=0.01,
anchor_masks=None, nms_topk=1000,
use_coord_conv=False, nms_keep_topk=100,
use_iou_aware=False, nms_iou_threshold=0.45,
use_spp=False, label_smooth=False,
use_drop_block=False, train_random_shapes=[
scale_x_y=1.0, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608
# YOLOv3 Loss ]):
ignore_threshold=0.7,
label_smooth=False,
use_iou_loss=False,
# NMS
use_matrix_nms=False,
nms_score_threshold=0.01,
nms_topk=1000,
nms_keep_topk=100,
nms_iou_threshold=0.45,
train_random_shapes=[
320, 352, 384, 416, 448, 480, 512, 544, 576, 608
]):
self.init_params = locals() self.init_params = locals()
super(YOLOv3, self).__init__('detector')
backbones = [ backbones = [
'DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large', 'DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large'
'ResNet50_vd'
] ]
assert backbone in backbones, "backbone should be one of {}".format( assert backbone in backbones, "backbone should be one of {}".format(
backbones) backbones)
super(YOLOv3, self).__init__('detector')
self.backbone = backbone self.backbone = backbone
self.num_classes = num_classes self.num_classes = num_classes
self.anchors = anchors self.anchors = anchors
self.anchor_masks = anchor_masks self.anchor_masks = anchor_masks
if anchors is None:
self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
if anchor_masks is None:
self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
self.ignore_threshold = ignore_threshold self.ignore_threshold = ignore_threshold
self.nms_score_threshold = nms_score_threshold self.nms_score_threshold = nms_score_threshold
self.nms_topk = nms_topk self.nms_topk = nms_topk
...@@ -105,19 +75,15 @@ class YOLOv3(BaseAPI): ...@@ -105,19 +75,15 @@ class YOLOv3(BaseAPI):
self.train_random_shapes = train_random_shapes self.train_random_shapes = train_random_shapes
self.fixed_input_shape = None self.fixed_input_shape = None
self.use_fine_grained_loss = False self.use_fine_grained_loss = False
if use_coord_conv or use_iou_aware or use_spp or use_drop_block or use_iou_loss: self.use_coord_conv = False
self.use_fine_grained_loss = True self.use_iou_aware = False
self.use_coord_conv = use_coord_conv self.use_spp = False
self.use_iou_aware = use_iou_aware self.use_drop_block = False
self.use_spp = use_spp self.use_iou_loss = False
self.use_drop_block = use_drop_block self.scale_x_y = 1.
self.use_iou_loss = use_iou_loss self.use_matrix_nms = False
self.scale_x_y = scale_x_y
self.max_height = 608
self.max_width = 608
self.use_matrix_nms = use_matrix_nms
self.use_ema = False self.use_ema = False
self.with_dcn_v2 = with_dcn_v2 self.with_dcn_v2 = False
def _get_backbone(self, backbone_name): def _get_backbone(self, backbone_name):
if backbone_name == 'DarkNet53': if backbone_name == 'DarkNet53':
...@@ -136,88 +102,8 @@ class YOLOv3(BaseAPI): ...@@ -136,88 +102,8 @@ class YOLOv3(BaseAPI):
model_name = backbone_name.split('_')[1] model_name = backbone_name.split('_')[1]
backbone = paddlex.cv.nets.MobileNetV3( backbone = paddlex.cv.nets.MobileNetV3(
norm_type='sync_bn', model_name=model_name) norm_type='sync_bn', model_name=model_name)
elif backbone_name == 'ResNet50_vd':
backbone = paddlex.cv.nets.ResNet(
norm_type='sync_bn',
layers=50,
freeze_norm=False,
norm_decay=0.,
feature_maps=[3, 4, 5],
freeze_at=0,
variant='d',
dcn_v2_stages=[5] if self.with_dcn_v2 else [])
return backbone return backbone
def build_net(self, mode='train'):
model = paddlex.cv.nets.detection.YOLOv3(
backbone=self._get_backbone(self.backbone),
num_classes=self.num_classes,
mode=mode,
anchors=self.anchors,
anchor_masks=self.anchor_masks,
ignore_threshold=self.ignore_threshold,
label_smooth=self.label_smooth,
nms_score_threshold=self.nms_score_threshold,
nms_topk=self.nms_topk,
nms_keep_topk=self.nms_keep_topk,
nms_iou_threshold=self.nms_iou_threshold,
fixed_input_shape=self.fixed_input_shape,
coord_conv=self.use_coord_conv,
iou_aware=self.use_iou_aware,
scale_x_y=self.scale_x_y,
spp=self.use_spp,
drop_block=self.use_drop_block,
use_matrix_nms=self.use_matrix_nms,
use_fine_grained_loss=self.use_fine_grained_loss,
use_iou_loss=self.use_iou_loss,
batch_size=self.batch_size_per_gpu
if hasattr(self, 'batch_size_per_gpu') else 8)
if mode == 'train' and self.use_iou_loss or self.use_iou_aware:
model.max_height = self.max_height
model.max_width = self.max_width
inputs = model.generate_inputs()
model_out = model.build_net(inputs)
outputs = OrderedDict([('bbox', model_out)])
if mode == 'train':
self.optimizer.minimize(model_out)
outputs = OrderedDict([('loss', model_out)])
if self.use_ema:
global_steps = _decay_step_counter()
self.ema = ExponentialMovingAverage(
self.ema_decay, thres_steps=global_steps)
self.ema.update()
return inputs, outputs
def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
lr_decay_epochs, lr_decay_gamma,
num_steps_each_epoch):
if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
logging.error(
"In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
exit=False)
logging.error(
"See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
exit=False)
logging.error(
"warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps
// num_steps_each_epoch))
boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
values = [(lr_decay_gamma**i) * learning_rate
for i in range(len(lr_decay_epochs) + 1)]
lr_decay = fluid.layers.piecewise_decay(
boundaries=boundaries, values=values)
lr_warmup = fluid.layers.linear_lr_warmup(
learning_rate=lr_decay,
warmup_steps=warmup_steps,
start_lr=warmup_start_lr,
end_lr=learning_rate)
optimizer = fluid.optimizer.Momentum(
learning_rate=lr_warmup,
momentum=0.9,
regularization=fluid.regularizer.L2DecayRegularizer(5e-04))
return optimizer
def train(self, def train(self,
num_epochs, num_epochs,
train_dataset, train_dataset,
...@@ -233,8 +119,6 @@ class YOLOv3(BaseAPI): ...@@ -233,8 +119,6 @@ class YOLOv3(BaseAPI):
warmup_start_lr=0.0, warmup_start_lr=0.0,
lr_decay_epochs=[213, 240], lr_decay_epochs=[213, 240],
lr_decay_gamma=0.1, lr_decay_gamma=0.1,
use_ema=False,
ema_decay=0.9998,
metric=None, metric=None,
use_vdl=False, use_vdl=False,
sensitivities_file=None, sensitivities_file=None,
...@@ -277,299 +161,11 @@ class YOLOv3(BaseAPI): ...@@ -277,299 +161,11 @@ class YOLOv3(BaseAPI):
ValueError: 评估类型不在指定列表中。 ValueError: 评估类型不在指定列表中。
ValueError: 模型从inference model进行加载。 ValueError: 模型从inference model进行加载。
""" """
if not self.trainable:
raise ValueError("Model is not trainable from load_model method.")
if metric is None:
if isinstance(train_dataset, paddlex.datasets.CocoDetection):
metric = 'COCO'
elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
isinstance(train_dataset, paddlex.datasets.EasyDataDet):
metric = 'VOC'
else:
raise ValueError(
"train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
)
assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
self.metric = metric
self.labels = train_dataset.labels
# 构建训练网络
if optimizer is None:
# 构建默认的优化策略
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
optimizer = self.default_optimizer(
learning_rate=learning_rate,
warmup_steps=warmup_steps,
warmup_start_lr=warmup_start_lr,
lr_decay_epochs=lr_decay_epochs,
lr_decay_gamma=lr_decay_gamma,
num_steps_each_epoch=num_steps_each_epoch)
self.optimizer = optimizer
self.use_ema = use_ema
self.ema_decay = ema_decay
self.batch_size_per_gpu = int(train_batch_size /
paddlex.env_info['num'])
if self.use_fine_grained_loss:
for transform in train_dataset.transforms.transforms:
if isinstance(transform, paddlex.det.transforms.Resize):
self.max_height = transform.target_size
self.max_width = transform.target_size
break
if train_dataset.transforms.batch_transforms is None:
train_dataset.transforms.batch_transforms = list()
define_random_shape = False
for bt in train_dataset.transforms.batch_transforms:
if isinstance(bt, paddlex.det.transforms.BatchRandomShape):
define_random_shape = True
if not define_random_shape:
if isinstance(self.train_random_shapes,
(list, tuple)) and len(self.train_random_shapes) > 0:
train_dataset.transforms.batch_transforms.append(
paddlex.det.transforms.BatchRandomShape(
random_shapes=self.train_random_shapes))
if self.use_fine_grained_loss:
self.max_height = max(self.max_height,
max(self.train_random_shapes))
self.max_width = max(self.max_width,
max(self.train_random_shapes))
if self.use_fine_grained_loss:
define_generate_target = False
for bt in train_dataset.transforms.batch_transforms:
if isinstance(bt, paddlex.det.transforms.GenerateYoloTarget):
define_generate_target = True
if not define_generate_target:
train_dataset.transforms.batch_transforms.append(
paddlex.det.transforms.GenerateYoloTarget(
anchors=self.anchors,
anchor_masks=self.anchor_masks,
num_classes=self.num_classes,
downsample_ratios=[32, 16, 8]))
# 构建训练、验证、预测网络
self.build_program()
# 初始化网络权重
self.net_initialize(
startup_prog=fluid.default_startup_program(),
pretrain_weights=pretrain_weights,
save_dir=save_dir,
sensitivities_file=sensitivities_file,
eval_metric_loss=eval_metric_loss,
resume_checkpoint=resume_checkpoint)
# 训练
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
use_vdl=use_vdl,
early_stop=early_stop,
early_stop_patience=early_stop_patience)
def evaluate(self,
eval_dataset,
batch_size=1,
epoch_id=None,
metric=None,
return_details=False):
"""评估。
Args:
eval_dataset (paddlex.datasets): 验证数据读取器。
batch_size (int): 验证数据批大小。默认为1。
epoch_id (int): 当前评估模型所在的训练轮数。
metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
如为COCODetection,则metric为'COCO'。
return_details (bool): 是否返回详细信息。
Returns:
tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details),
当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
"""
arrange_transforms(
model_type=self.model_type,
class_name=self.__class__.__name__,
transforms=eval_dataset.transforms,
mode='eval')
if metric is None:
if hasattr(self, 'metric') and self.metric is not None:
metric = self.metric
else:
if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
metric = 'COCO'
elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
metric = 'VOC'
else:
raise Exception(
"eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
)
assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
results = list()
data_generator = eval_dataset.generator(
batch_size=batch_size, drop_last=False)
logging.info(
"Start to evaluating(total_samples={}, total_steps={})...".format(
eval_dataset.num_samples, total_steps))
for step, data in tqdm.tqdm(
enumerate(data_generator()), total=total_steps):
images = np.array([d[0] for d in data])
im_sizes = np.array([d[1] for d in data])
feed_data = {'image': images, 'im_size': im_sizes}
with fluid.scope_guard(self.scope):
outputs = self.exe.run(
self.test_prog,
feed=[feed_data],
fetch_list=list(self.test_outputs.values()),
return_numpy=False)
res = {
'bbox': (np.array(outputs[0]),
outputs[0].recursive_sequence_lengths())
}
res_id = [np.array([d[2]]) for d in data]
res['im_id'] = (res_id, [])
if metric == 'VOC':
res_gt_box = [d[3].reshape(-1, 4) for d in data]
res_gt_label = [d[4].reshape(-1, 1) for d in data]
res_is_difficult = [d[5].reshape(-1, 1) for d in data]
res_id = [np.array([d[2]]) for d in data]
res['gt_box'] = (res_gt_box, [])
res['gt_label'] = (res_gt_label, [])
res['is_difficult'] = (res_is_difficult, [])
results.append(res)
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
1, total_steps))
box_ap_stats, eval_details = eval_results(
results, metric, eval_dataset.coco_gt, with_background=False)
evaluate_metrics = OrderedDict(
zip(['bbox_mmap'
if metric == 'COCO' else 'bbox_map'], box_ap_stats))
if return_details:
return evaluate_metrics, eval_details
return evaluate_metrics
@staticmethod
def _preprocess(images, transforms, model_type, class_name, thread_num=1):
arrange_transforms(
model_type=model_type,
class_name=class_name,
transforms=transforms,
mode='test')
pool = ThreadPool(thread_num)
batch_data = pool.map(transforms, images)
pool.close()
pool.join()
padding_batch = generate_minibatch(batch_data)
im = np.array(
[data[0] for data in padding_batch],
dtype=padding_batch[0][0].dtype)
im_size = np.array([data[1] for data in padding_batch], dtype=np.int32)
return im, im_size
@staticmethod
def _postprocess(res, batch_size, num_classes, labels):
clsid2catid = dict({i: i for i in range(num_classes)})
xywh_results = bbox2out([res], clsid2catid)
preds = [[] for i in range(batch_size)]
for xywh_res in xywh_results:
image_id = xywh_res['image_id']
del xywh_res['image_id']
xywh_res['category'] = labels[xywh_res['category_id']]
preds[image_id].append(xywh_res)
return preds
def predict(self, img_file, transforms=None):
"""预测。
Args:
img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
transforms (paddlex.det.transforms): 数据预处理操作。
Returns:
list: 预测结果列表,每个预测结果由预测框类别标签、
预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if isinstance(img_file, (str, np.ndarray)):
images = [img_file]
else:
raise Exception("img_file must be str/np.ndarray")
if transforms is None:
transforms = self.test_transforms
im, im_size = YOLOv3._preprocess(images, transforms, self.model_type,
self.__class__.__name__)
with fluid.scope_guard(self.scope):
result = self.exe.run(self.test_prog,
feed={'image': im,
'im_size': im_size},
fetch_list=list(self.test_outputs.values()),
return_numpy=False,
use_program_cache=True)
res = {
k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(list(self.test_outputs.keys()), result)
}
res['im_id'] = (np.array(
[[i] for i in range(len(images))]).astype('int32'), [[]])
preds = YOLOv3._postprocess(res,
len(images), self.num_classes, self.labels)
return preds[0]
def batch_predict(self, img_file_list, transforms=None, thread_num=2):
"""预测。
Args:
img_file_list (list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径,也可以是解码后的排列格式为(H,W,C)
且类型为float32且为BGR格式的数组。
transforms (paddlex.det.transforms): 数据预处理操作。
thread_num (int): 并发执行各图像预处理时的线程数。
Returns:
list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、
预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if not isinstance(img_file_list, (list, tuple)):
raise Exception("im_file must be list/tuple")
if transforms is None:
transforms = self.test_transforms
im, im_size = YOLOv3._preprocess(img_file_list, transforms,
self.model_type,
self.__class__.__name__, thread_num)
with fluid.scope_guard(self.scope):
result = self.exe.run(self.test_prog,
feed={'image': im,
'im_size': im_size},
fetch_list=list(self.test_outputs.values()),
return_numpy=False,
use_program_cache=True)
res = { return super(YOLOv3, self).train(
k: (np.array(v), v.recursive_sequence_lengths()) num_epochs, train_dataset, train_batch_size, eval_dataset,
for k, v in zip(list(self.test_outputs.keys()), result) save_interval_epochs, log_interval_steps, save_dir,
} pretrain_weights, optimizer, learning_rate, warmup_steps,
res['im_id'] = (np.array( warmup_start_lr, lr_decay_epochs, lr_decay_gamma, metric, use_vdl,
[[i] for i in range(len(img_file_list))]).astype('int32'), [[]]) sensitivities_file, eval_metric_loss, early_stop,
preds = YOLOv3._postprocess(res, early_stop_patience, resume_checkpoint, False)
len(img_file_list), self.num_classes,
self.labels)
return preds
...@@ -496,15 +496,14 @@ class YOLOv3: ...@@ -496,15 +496,14 @@ class YOLOv3:
gt_label = inputs['gt_label'] gt_label = inputs['gt_label']
gt_score = inputs['gt_score'] gt_score = inputs['gt_score']
im_size = inputs['im_size'] im_size = inputs['im_size']
#num_boxes = fluid.layers.shape(gt_box)[1] num_boxes = fluid.layers.shape(gt_box)[1]
#im_size_wh = fluid.layers.reverse(im_size, axis=1) im_size_wh = fluid.layers.reverse(im_size, axis=1)
#whwh = fluid.layers.concat([im_size_wh, im_size_wh], axis=1) whwh = fluid.layers.concat([im_size_wh, im_size_wh], axis=1)
#whwh = fluid.layers.unsqueeze(whwh, axes=[1]) whwh = fluid.layers.unsqueeze(whwh, axes=[1])
#whwh = fluid.layers.expand(whwh, expand_times=[1, num_boxes, 1]) whwh = fluid.layers.expand(whwh, expand_times=[1, num_boxes, 1])
#whwh = fluid.layers.cast(whwh, dtype='float32') whwh = fluid.layers.cast(whwh, dtype='float32')
#whwh.stop_gradient = True whwh.stop_gradient = True
#normalized_box = fluid.layers.elementwise_div(gt_box, whwh) normalized_box = fluid.layers.elementwise_div(gt_box, whwh)
normalized_box = gt_box
targets = [] targets = []
if self.use_fine_grained_loss: if self.use_fine_grained_loss:
......
...@@ -91,7 +91,10 @@ def arrange_transforms(model_type, class_name, transforms, mode='train'): ...@@ -91,7 +91,10 @@ def arrange_transforms(model_type, class_name, transforms, mode='train'):
elif model_type == 'segmenter': elif model_type == 'segmenter':
arrange_transform = seg_transforms.ArrangeSegmenter arrange_transform = seg_transforms.ArrangeSegmenter
elif model_type == 'detector': elif model_type == 'detector':
arrange_name = 'Arrange{}'.format(class_name) if class_name == "PPYOLO":
arrange_name = 'ArrangeYOLOv3'
else:
arrange_name = 'Arrange{}'.format(class_name)
arrange_transform = getattr(det_transforms, arrange_name) arrange_transform = getattr(det_transforms, arrange_name)
else: else:
raise Exception("Unrecognized model type: {}".format(self.model_type)) raise Exception("Unrecognized model type: {}".format(self.model_type))
......
...@@ -17,6 +17,7 @@ from . import cv ...@@ -17,6 +17,7 @@ from . import cv
FasterRCNN = cv.models.FasterRCNN FasterRCNN = cv.models.FasterRCNN
YOLOv3 = cv.models.YOLOv3 YOLOv3 = cv.models.YOLOv3
PPYOLO = cv.models.PPYOLO
MaskRCNN = cv.models.MaskRCNN MaskRCNN = cv.models.MaskRCNN
transforms = cv.transforms.det_transforms transforms = cv.transforms.det_transforms
visualize = cv.models.utils.visualize.visualize_detection visualize = cv.models.utils.visualize.visualize_detection
......
...@@ -43,17 +43,7 @@ eval_dataset = pdx.datasets.VOCDetection( ...@@ -43,17 +43,7 @@ eval_dataset = pdx.datasets.VOCDetection(
num_classes = len(train_dataset.labels) num_classes = len(train_dataset.labels)
# API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3 # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3
model = pdx.det.YOLOv3( model = pdx.det.PPYOLO(num_classes=num_classes)
num_classes=num_classes,
backbone='ResNet50_vd',
with_dcn_v2=True,
use_coord_conv=True,
use_iou_aware=True,
use_spp=True,
use_drop_block=True,
scale_x_y=1.05,
use_iou_loss=True,
use_matrix_nms=True)
# API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#train # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#train
# 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
...@@ -64,6 +54,5 @@ model.train( ...@@ -64,6 +54,5 @@ model.train(
eval_dataset=eval_dataset, eval_dataset=eval_dataset,
learning_rate=0.000125, learning_rate=0.000125,
lr_decay_epochs=[210, 240], lr_decay_epochs=[210, 240],
use_ema=True,
save_dir='output/ppyolo', save_dir='output/ppyolo',
use_vdl=True) use_vdl=True)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册