Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
01e54a1f
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
01e54a1f
编写于
6月 19, 2020
作者:
J
jack
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use google style
上级
afb8620c
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
300 addition
and
245 deletion
+300
-245
deploy/cpp/demo/classifier.cpp
deploy/cpp/demo/classifier.cpp
+40
-31
deploy/cpp/demo/detector.cpp
deploy/cpp/demo/detector.cpp
+48
-39
deploy/cpp/demo/segmenter.cpp
deploy/cpp/demo/segmenter.cpp
+34
-25
deploy/cpp/include/paddlex/config_parser.h
deploy/cpp/include/paddlex/config_parser.h
+1
-1
deploy/cpp/include/paddlex/paddlex.h
deploy/cpp/include/paddlex/paddlex.h
+39
-28
deploy/cpp/include/paddlex/transforms.h
deploy/cpp/include/paddlex/transforms.h
+5
-3
deploy/cpp/include/paddlex/visualize.h
deploy/cpp/include/paddlex/visualize.h
+2
-2
deploy/cpp/src/paddlex.cpp
deploy/cpp/src/paddlex.cpp
+130
-115
deploy/cpp/src/visualize.cpp
deploy/cpp/src/visualize.cpp
+1
-1
未找到文件。
deploy/cpp/demo/classifier.cpp
浏览文件 @
01e54a1f
...
...
@@ -13,18 +13,18 @@
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono>
#include <chrono>
// NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include <omp.h>
#include "include/paddlex/paddlex.h"
using
namespace
std
::
chrono
;
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
...
...
@@ -34,7 +34,9 @@ DEFINE_string(key, "", "key of encryption");
DEFINE_string
(
image
,
""
,
"Path of test image file"
);
DEFINE_string
(
image_list
,
""
,
"Path of test image list file"
);
DEFINE_int32
(
batch_size
,
1
,
"Batch size of infering"
);
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
int
main
(
int
argc
,
char
**
argv
)
{
// Parsing command-line
...
...
@@ -51,7 +53,12 @@ int main(int argc, char** argv) {
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_batch_size
);
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_batch_size
);
// 进行预测
double
total_running_time_s
=
0.0
;
...
...
@@ -70,27 +77,33 @@ int main(int argc, char** argv) {
image_paths
.
push_back
(
image_path
);
}
imgs
=
image_paths
.
size
();
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
auto
start
=
system_clock
::
now
();
// 读图像
int
im_vec_size
=
std
::
min
((
int
)
image_paths
.
size
(),
i
+
FLAGS_batch_size
);
int
im_vec_size
=
std
::
min
(
static_cat
<
int
>
(
image_paths
.
size
()),
i
+
FLAGS_batch_size
);
std
::
vector
<
cv
::
Mat
>
im_vec
(
im_vec_size
-
i
);
std
::
vector
<
PaddleX
::
ClsResult
>
results
(
im_vec_size
-
i
,
PaddleX
::
ClsResult
());
std
::
vector
<
PaddleX
::
ClsResult
>
results
(
im_vec_size
-
i
,
PaddleX
::
ClsResult
());
int
thread_num
=
std
::
min
(
FLAGS_thread_num
,
im_vec_size
-
i
);
#pragma omp parallel for num_threads(thread_num)
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
im_vec
[
j
-
i
]
=
std
::
move
(
cv
::
imread
(
image_paths
[
j
],
1
));
}
auto
imread_end
=
system_clock
::
now
();
model
.
predict
(
im_vec
,
results
,
thread_num
);
model
.
predict
(
im_vec
,
&
results
,
thread_num
);
auto
imread_duration
=
duration_cast
<
microseconds
>
(
imread_end
-
start
);
total_imread_time_s
+=
double
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
total_imread_time_s
+=
static_cast
<
double
>
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
double
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
std
::
cout
<<
"Path:"
<<
image_paths
[
j
]
<<
", predict label: "
<<
results
[
j
-
i
].
category
<<
", label_id:"
<<
results
[
j
-
i
].
category_id
...
...
@@ -104,21 +117,17 @@ int main(int argc, char** argv) {
model
.
predict
(
im
,
&
result
);
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
double
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
std
::
cout
<<
"Predict label: "
<<
result
.
category
<<
", label_id:"
<<
result
.
category_id
<<
", score: "
<<
result
.
score
<<
std
::
endl
;
}
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read time: "
<<
total_imread_time_s
/
imgs
<<
" s/img, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read time: "
<<
total_imread_time_s
/
imgs
<<
" s/img, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
return
0
;
}
deploy/cpp/demo/detector.cpp
浏览文件 @
01e54a1f
...
...
@@ -13,20 +13,20 @@
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono>
#include <chrono>
// NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include <omp.h>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
using
namespace
std
::
chrono
;
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
...
...
@@ -37,8 +37,12 @@ DEFINE_string(image, "", "Path of test image file");
DEFINE_string
(
image_list
,
""
,
"Path of test image list file"
);
DEFINE_string
(
save_dir
,
"output"
,
"Path to save visualized image"
);
DEFINE_int32
(
batch_size
,
1
,
"Batch size of infering"
);
DEFINE_double
(
threshold
,
0.5
,
"The minimum scores of target boxes which are shown"
);
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
DEFINE_double
(
threshold
,
0.5
,
"The minimum scores of target boxes which are shown"
);
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
...
...
@@ -55,7 +59,12 @@ int main(int argc, char** argv) {
std
::
cout
<<
"Thread num: "
<<
FLAGS_thread_num
<<
std
::
endl
;
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_batch_size
);
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_batch_size
);
double
total_running_time_s
=
0.0
;
double
total_imread_time_s
=
0.0
;
...
...
@@ -75,41 +84,47 @@ int main(int argc, char** argv) {
image_paths
.
push_back
(
image_path
);
}
imgs
=
image_paths
.
size
();
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
auto
start
=
system_clock
::
now
();
int
im_vec_size
=
std
::
min
((
int
)
image_paths
.
size
(),
i
+
FLAGS_batch_size
);
int
im_vec_size
=
std
::
min
(
static_cast
<
int
>
(
image_paths
.
size
()),
i
+
FLAGS_batch_size
);
std
::
vector
<
cv
::
Mat
>
im_vec
(
im_vec_size
-
i
);
std
::
vector
<
PaddleX
::
DetResult
>
results
(
im_vec_size
-
i
,
PaddleX
::
DetResult
());
std
::
vector
<
PaddleX
::
DetResult
>
results
(
im_vec_size
-
i
,
PaddleX
::
DetResult
());
int
thread_num
=
std
::
min
(
FLAGS_thread_num
,
im_vec_size
-
i
);
#pragma omp parallel for num_threads(thread_num)
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
im_vec
[
j
-
i
]
=
std
::
move
(
cv
::
imread
(
image_paths
[
j
],
1
));
}
auto
imread_end
=
system_clock
::
now
();
model
.
predict
(
im_vec
,
results
,
thread_num
);
model
.
predict
(
im_vec
,
&
results
,
thread_num
);
auto
imread_duration
=
duration_cast
<
microseconds
>
(
imread_end
-
start
);
total_imread_time_s
+=
double
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
total_imread_time_s
+=
static_cast
<
double
>
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
double
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
//输出结果目标框
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
for
(
int
k
=
0
;
k
<
results
[
j
].
boxes
.
size
();
++
k
)
{
std
::
cout
<<
"image file: "
<<
image_paths
[
i
+
j
]
<<
", "
;
// << std::endl;
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 输出结果目标框
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
for
(
int
k
=
0
;
k
<
results
[
j
].
boxes
.
size
();
++
k
)
{
std
::
cout
<<
"image file: "
<<
image_paths
[
i
+
j
]
<<
", "
;
std
::
cout
<<
"predict label: "
<<
results
[
j
].
boxes
[
k
].
category
<<
", label_id:"
<<
results
[
j
].
boxes
[
k
].
category_id
<<
", score: "
<<
results
[
j
].
boxes
[
k
].
score
<<
", box(xmin, ymin, w, h):("
<<
", score: "
<<
results
[
j
].
boxes
[
k
].
score
<<
", box(xmin, ymin, w, h):("
<<
results
[
j
].
boxes
[
k
].
coordinate
[
0
]
<<
", "
<<
results
[
j
].
boxes
[
k
].
coordinate
[
1
]
<<
", "
<<
results
[
j
].
boxes
[
k
].
coordinate
[
2
]
<<
", "
<<
results
[
j
].
boxes
[
k
].
coordinate
[
3
]
<<
")"
<<
std
::
endl
;
}
}
// 可视化
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
im_vec
[
j
],
results
[
j
],
model
.
labels
,
colormap
,
FLAGS_threshold
);
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
im_vec
[
j
],
results
[
j
],
model
.
labels
,
colormap
,
FLAGS_threshold
);
std
::
string
save_path
=
PaddleX
::
generate_save_path
(
FLAGS_save_dir
,
image_paths
[
i
+
j
]);
cv
::
imwrite
(
save_path
,
vis_img
);
...
...
@@ -124,9 +139,9 @@ int main(int argc, char** argv) {
std
::
cout
<<
"image file: "
<<
FLAGS_image
<<
std
::
endl
;
std
::
cout
<<
", predict label: "
<<
result
.
boxes
[
i
].
category
<<
", label_id:"
<<
result
.
boxes
[
i
].
category_id
<<
", score: "
<<
result
.
boxes
[
i
].
score
<<
", box(xmin, ymin, w, h):("
<<
result
.
boxes
[
i
].
coordinate
[
0
]
<<
", "
<<
result
.
boxes
[
i
].
coordinate
[
1
]
<<
", "
<<
", score: "
<<
result
.
boxes
[
i
].
score
<<
", box(xmin, ymin, w, h):("
<<
result
.
boxes
[
i
].
coordinate
[
0
]
<<
", "
<<
result
.
boxes
[
i
].
coordinate
[
1
]
<<
", "
<<
result
.
boxes
[
i
].
coordinate
[
2
]
<<
", "
<<
result
.
boxes
[
i
].
coordinate
[
3
]
<<
")"
<<
std
::
endl
;
}
...
...
@@ -141,17 +156,11 @@ int main(int argc, char** argv) {
std
::
cout
<<
"Visualized output saved as "
<<
save_path
<<
std
::
endl
;
}
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read img time: "
<<
total_imread_time_s
/
imgs
<<
" s, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read img time: "
<<
total_imread_time_s
/
imgs
<<
" s, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
return
0
;
}
deploy/cpp/demo/segmenter.cpp
浏览文件 @
01e54a1f
...
...
@@ -13,19 +13,19 @@
// limitations under the License.
#include <glog/logging.h>
#include <omp.h>
#include <algorithm>
#include <chrono>
#include <chrono>
// NOLINT
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include <omp.h>
#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"
using
namespace
std
::
chrono
;
using
namespace
std
::
chrono
;
// NOLINT
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
...
...
@@ -36,7 +36,9 @@ DEFINE_string(image, "", "Path of test image file");
DEFINE_string
(
image_list
,
""
,
"Path of test image list file"
);
DEFINE_string
(
save_dir
,
"output"
,
"Path to save visualized image"
);
DEFINE_int32
(
batch_size
,
1
,
"Batch size of infering"
);
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
DEFINE_int32
(
thread_num
,
omp_get_num_procs
(),
"Number of preprocessing threads"
);
int
main
(
int
argc
,
char
**
argv
)
{
// 解析命令行参数
...
...
@@ -53,7 +55,12 @@ int main(int argc, char** argv) {
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_batch_size
);
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_batch_size
);
double
total_running_time_s
=
0.0
;
double
total_imread_time_s
=
0.0
;
...
...
@@ -72,25 +79,31 @@ int main(int argc, char** argv) {
image_paths
.
push_back
(
image_path
);
}
imgs
=
image_paths
.
size
();
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
auto
start
=
system_clock
::
now
();
int
im_vec_size
=
std
::
min
((
int
)
image_paths
.
size
(),
i
+
FLAGS_batch_size
);
int
im_vec_size
=
std
::
min
(
static_cast
<
int
>
(
image_paths
.
size
()),
i
+
FLAGS_batch_size
);
std
::
vector
<
cv
::
Mat
>
im_vec
(
im_vec_size
-
i
);
std
::
vector
<
PaddleX
::
SegResult
>
results
(
im_vec_size
-
i
,
PaddleX
::
SegResult
());
std
::
vector
<
PaddleX
::
SegResult
>
results
(
im_vec_size
-
i
,
PaddleX
::
SegResult
());
int
thread_num
=
std
::
min
(
FLAGS_thread_num
,
im_vec_size
-
i
);
#pragma omp parallel for num_threads(thread_num)
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
im_vec
[
j
-
i
]
=
std
::
move
(
cv
::
imread
(
image_paths
[
j
],
1
));
}
auto
imread_end
=
system_clock
::
now
();
model
.
predict
(
im_vec
,
results
,
thread_num
);
model
.
predict
(
im_vec
,
&
results
,
thread_num
);
auto
imread_duration
=
duration_cast
<
microseconds
>
(
imread_end
-
start
);
total_imread_time_s
+=
double
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
total_imread_time_s
+=
static_cast
<
double
>
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
double
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 可视化
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
im_vec
[
j
],
results
[
j
],
model
.
labels
,
colormap
);
std
::
string
save_path
=
...
...
@@ -106,7 +119,9 @@ int main(int argc, char** argv) {
model
.
predict
(
im
,
&
result
);
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
double
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 可视化
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
im
,
result
,
model
.
labels
,
colormap
);
std
::
string
save_path
=
...
...
@@ -115,17 +130,11 @@ int main(int argc, char** argv) {
result
.
clear
();
std
::
cout
<<
"Visualized output saved as "
<<
save_path
<<
std
::
endl
;
}
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read img time: "
<<
total_imread_time_s
/
imgs
<<
" s, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read img time: "
<<
total_imread_time_s
/
imgs
<<
" s, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
return
0
;
}
deploy/cpp/include/paddlex/config_parser.h
浏览文件 @
01e54a1f
...
...
@@ -54,4 +54,4 @@ class ConfigPaser {
YAML
::
Node
Transforms_
;
};
}
// namespace Paddle
Detection
}
// namespace Paddle
X
deploy/cpp/include/paddlex/paddlex.h
浏览文件 @
01e54a1f
...
...
@@ -16,8 +16,11 @@
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "yaml-cpp/yaml.h"
#ifdef _WIN32
...
...
@@ -28,13 +31,13 @@
#include "paddle_inference_api.h" // NOLINT
#include "config_parser.h"
#include "results.h"
#include "transforms.h"
#include "config_parser.h"
// NOLINT
#include "results.h"
// NOLINT
#include "transforms.h"
// NOLINT
#ifdef WITH_ENCRYPTION
#include "paddle_model_decrypt.h"
#include "model_code.h"
#include "paddle_model_decrypt.h"
// NOLINT
#include "model_code.h"
// NOLINT
#endif
namespace
PaddleX
{
...
...
@@ -119,7 +122,9 @@ class Model {
* each thread run preprocess on single image matrix
* @return true if preprocess a batch of image matrixs successfully
* */
bool
preprocess
(
const
std
::
vector
<
cv
::
Mat
>
&
input_im_batch
,
std
::
vector
<
ImageBlob
>
&
blob_batch
,
int
thread_num
=
1
);
bool
preprocess
(
const
std
::
vector
<
cv
::
Mat
>
&
input_im_batch
,
std
::
vector
<
ImageBlob
>
*
blob_batch
,
int
thread_num
=
1
);
/*
* @brief
...
...
@@ -143,7 +148,9 @@ class Model {
* on single image matrix
* @return true if predict successfully
* */
bool
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
ClsResult
>
&
results
,
int
thread_num
=
1
);
bool
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
ClsResult
>
*
results
,
int
thread_num
=
1
);
/*
* @brief
...
...
@@ -167,7 +174,9 @@ class Model {
* on single image matrix
* @return true if predict successfully
* */
bool
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
DetResult
>
&
result
,
int
thread_num
=
1
);
bool
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
DetResult
>
*
result
,
int
thread_num
=
1
);
/*
* @brief
...
...
@@ -191,7 +200,9 @@ class Model {
* on single image matrix
* @return true if predict successfully
* */
bool
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
SegResult
>
&
result
,
int
thread_num
=
1
);
bool
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
SegResult
>
*
result
,
int
thread_num
=
1
);
// model type, include 3 type: classifier, detector, segmenter
std
::
string
type
;
...
...
@@ -209,4 +220,4 @@ class Model {
// a predictor which run the model predicting
std
::
unique_ptr
<
paddle
::
PaddlePredictor
>
predictor_
;
};
}
// namesp
ce of
PaddleX
}
// namesp
ace
PaddleX
deploy/cpp/include/paddlex/transforms.h
浏览文件 @
01e54a1f
...
...
@@ -214,6 +214,7 @@ class Padding : public Transform {
}
}
virtual
bool
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
int
coarsest_stride_
=
-
1
;
int
width_
=
0
;
...
...
@@ -229,6 +230,7 @@ class Transforms {
void
Init
(
const
YAML
::
Node
&
node
,
bool
to_rgb
=
true
);
std
::
shared_ptr
<
Transform
>
CreateTransform
(
const
std
::
string
&
name
);
bool
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
private:
std
::
vector
<
std
::
shared_ptr
<
Transform
>>
transforms_
;
bool
to_rgb_
=
true
;
...
...
deploy/cpp/include/paddlex/visualize.h
浏览文件 @
01e54a1f
...
...
@@ -94,4 +94,4 @@ cv::Mat Visualize(const cv::Mat& img,
* */
std
::
string
generate_save_path
(
const
std
::
string
&
save_dir
,
const
std
::
string
&
file_path
);
}
// namesp
ce of
PaddleX
}
// namesp
ace
PaddleX
deploy/cpp/src/paddlex.cpp
浏览文件 @
01e54a1f
...
...
@@ -11,10 +11,10 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <omp.h>
#include
"include/paddlex/paddlex.h"
#include
<algorithm>
#include <cstring>
#include "include/paddlex/paddlex.h"
namespace
PaddleX
{
void
Model
::
create_predictor
(
const
std
::
string
&
model_dir
,
...
...
@@ -32,13 +32,14 @@ void Model::create_predictor(const std::string& model_dir,
std
::
string
model_file
=
model_dir
+
OS_PATH_SEP
+
"__model__"
;
std
::
string
params_file
=
model_dir
+
OS_PATH_SEP
+
"__params__"
;
#ifdef WITH_ENCRYPTION
if
(
key
!=
""
){
if
(
key
!=
""
)
{
model_file
=
model_dir
+
OS_PATH_SEP
+
"__model__.encrypted"
;
params_file
=
model_dir
+
OS_PATH_SEP
+
"__params__.encrypted"
;
paddle_security_load_model
(
&
config
,
key
.
c_str
(),
model_file
.
c_str
(),
params_file
.
c_str
());
paddle_security_load_model
(
&
config
,
key
.
c_str
(),
model_file
.
c_str
(),
params_file
.
c_str
());
}
#endif
if
(
key
==
""
){
if
(
key
==
""
)
{
config
.
SetModel
(
model_file
,
params_file
);
}
if
(
use_gpu
)
{
...
...
@@ -70,11 +71,11 @@ bool Model::load_config(const std::string& model_dir) {
name
=
config
[
"Model"
].
as
<
std
::
string
>
();
std
::
string
version
=
config
[
"version"
].
as
<
std
::
string
>
();
if
(
version
[
0
]
==
'0'
)
{
std
::
cerr
<<
"[Init] Version of the loaded model is lower than 1.0.0,
deployment
"
<<
"cannot be done, please refer to "
<<
"https://github.com/PaddlePaddle/PaddleX/blob/develop/docs
/tutorials/deploy/upgrade_version.md
"
<<
"
to transfer version.
"
<<
std
::
endl
;
std
::
cerr
<<
"[Init] Version of the loaded model is lower than 1.0.0, "
<<
"
deployment
cannot be done, please refer to "
<<
"https://github.com/PaddlePaddle/PaddleX/blob/develop/docs"
<<
"
/tutorials/deploy/upgrade_version.md
"
<<
"to transfer version."
<<
std
::
endl
;
return
false
;
}
bool
to_rgb
=
true
;
...
...
@@ -108,14 +109,16 @@ bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
}
// use openmp
bool
Model
::
preprocess
(
const
std
::
vector
<
cv
::
Mat
>
&
input_im_batch
,
std
::
vector
<
ImageBlob
>
&
blob_batch
,
int
thread_num
)
{
bool
Model
::
preprocess
(
const
std
::
vector
<
cv
::
Mat
>&
input_im_batch
,
std
::
vector
<
ImageBlob
>*
blob_batch
,
int
thread_num
)
{
int
batch_size
=
input_im_batch
.
size
();
bool
success
=
true
;
thread_num
=
std
::
min
(
thread_num
,
batch_size
);
#pragma omp parallel for num_threads(thread_num)
for
(
int
i
=
0
;
i
<
input_im_batch
.
size
();
++
i
)
{
for
(
int
i
=
0
;
i
<
input_im_batch
.
size
();
++
i
)
{
cv
::
Mat
im
=
input_im_batch
[
i
].
clone
();
if
(
!
transforms_
.
Run
(
&
im
,
&
blob_batch
[
i
]))
{
if
(
!
transforms_
.
Run
(
&
im
,
&
(
*
blob_batch
)[
i
]))
{
success
=
false
;
}
}
...
...
@@ -127,8 +130,7 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
if
(
type
==
"detector"
)
{
std
::
cerr
<<
"Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
// 处理输入图像
...
...
@@ -161,23 +163,23 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
return
true
;
}
bool
Model
::
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
ClsResult
>
&
results
,
int
thread_num
)
{
for
(
auto
&
inputs
:
inputs_batch_
)
{
bool
Model
::
predict
(
const
std
::
vector
<
cv
::
Mat
>&
im_batch
,
std
::
vector
<
ClsResult
>*
results
,
int
thread_num
)
{
for
(
auto
&
inputs
:
inputs_batch_
)
{
inputs
.
clear
();
}
if
(
type
==
"detector"
)
{
std
::
cerr
<<
"Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
<<
std
::
endl
;
"function predict()!"
<<
std
::
endl
;
return
false
;
}
else
if
(
type
==
"segmenter"
)
{
std
::
cerr
<<
"Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
// 处理输入图像
if
(
!
preprocess
(
im_batch
,
inputs_batch_
,
thread_num
))
{
if
(
!
preprocess
(
im_batch
,
&
inputs_batch_
,
thread_num
))
{
std
::
cerr
<<
"Preprocess failed!"
<<
std
::
endl
;
return
false
;
}
...
...
@@ -188,11 +190,13 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<ClsResult>
int
w
=
inputs_batch_
[
0
].
new_im_size_
[
1
];
in_tensor
->
Reshape
({
batch_size
,
3
,
h
,
w
});
std
::
vector
<
float
>
inputs_data
(
batch_size
*
3
*
h
*
w
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
im_data_
.
begin
(),
inputs_batch_
[
i
].
im_data_
.
end
(),
inputs_data
.
begin
()
+
i
*
3
*
h
*
w
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
im_data_
.
begin
(),
inputs_batch_
[
i
].
im_data_
.
end
(),
inputs_data
.
begin
()
+
i
*
3
*
h
*
w
);
}
in_tensor
->
copy_from_cpu
(
inputs_data
.
data
());
//in_tensor->copy_from_cpu(inputs_.im_data_.data());
//
in_tensor->copy_from_cpu(inputs_.im_data_.data());
predictor_
->
ZeroCopyRun
();
// 取出模型的输出结果
auto
output_names
=
predictor_
->
GetOutputNames
();
...
...
@@ -206,15 +210,15 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<ClsResult>
output_tensor
->
copy_to_cpu
(
outputs_
.
data
());
// 对模型输出结果进行后处理
int
single_batch_size
=
size
/
batch_size
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
start_ptr
=
std
::
begin
(
outputs_
);
auto
end_ptr
=
std
::
begin
(
outputs_
);
std
::
advance
(
start_ptr
,
i
*
single_batch_size
);
std
::
advance
(
end_ptr
,
(
i
+
1
)
*
single_batch_size
);
auto
ptr
=
std
::
max_element
(
start_ptr
,
end_ptr
);
results
[
i
].
category_id
=
std
::
distance
(
start_ptr
,
ptr
);
results
[
i
].
score
=
*
ptr
;
results
[
i
].
category
=
labels
[
results
[
i
].
category_id
];
(
*
results
)
[
i
].
category_id
=
std
::
distance
(
start_ptr
,
ptr
);
(
*
results
)
[
i
].
score
=
*
ptr
;
(
*
results
)[
i
].
category
=
labels
[(
*
results
)
[
i
].
category_id
];
}
return
true
;
}
...
...
@@ -224,13 +228,11 @@ bool Model::predict(const cv::Mat& im, DetResult* result) {
result
->
clear
();
if
(
type
==
"classifier"
)
{
std
::
cerr
<<
"Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
else
if
(
type
==
"segmenter"
)
{
std
::
cerr
<<
"Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
...
...
@@ -324,25 +326,25 @@ bool Model::predict(const cv::Mat& im, DetResult* result) {
return
true
;
}
bool
Model
::
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
DetResult
>
&
result
,
int
thread_num
)
{
for
(
auto
&
inputs
:
inputs_batch_
)
{
bool
Model
::
predict
(
const
std
::
vector
<
cv
::
Mat
>&
im_batch
,
std
::
vector
<
DetResult
>*
result
,
int
thread_num
)
{
for
(
auto
&
inputs
:
inputs_batch_
)
{
inputs
.
clear
();
}
if
(
type
==
"classifier"
)
{
std
::
cerr
<<
"Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
else
if
(
type
==
"segmenter"
)
{
std
::
cerr
<<
"Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
int
batch_size
=
im_batch
.
size
();
// 处理输入图像
if
(
!
preprocess
(
im_batch
,
inputs_batch_
,
thread_num
))
{
if
(
!
preprocess
(
im_batch
,
&
inputs_batch_
,
thread_num
))
{
std
::
cerr
<<
"Preprocess failed!"
<<
std
::
endl
;
return
false
;
}
...
...
@@ -351,28 +353,29 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<DetResult>
if
(
name
==
"FasterRCNN"
||
name
==
"MaskRCNN"
)
{
int
max_h
=
-
1
;
int
max_w
=
-
1
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
max_h
=
std
::
max
(
max_h
,
inputs_batch_
[
i
].
new_im_size_
[
0
]);
max_w
=
std
::
max
(
max_w
,
inputs_batch_
[
i
].
new_im_size_
[
1
]);
//
std::cout << "(" << inputs_batch_[i].new_im_size_[0]
//
std::cout << "(" << inputs_batch_[i].new_im_size_[0]
// << ", " << inputs_batch_[i].new_im_size_[1]
// << ")" << std::endl;
}
thread_num
=
std
::
min
(
thread_num
,
batch_size
);
#pragma omp parallel for num_threads(thread_num)
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
h
=
inputs_batch_
[
i
].
new_im_size_
[
0
];
int
w
=
inputs_batch_
[
i
].
new_im_size_
[
1
];
int
c
=
im_batch
[
i
].
channels
();
if
(
max_h
!=
h
||
max_w
!=
w
)
{
if
(
max_h
!=
h
||
max_w
!=
w
)
{
std
::
vector
<
float
>
temp_buffer
(
c
*
max_h
*
max_w
);
float
*
temp_ptr
=
temp_buffer
.
data
();
float
*
ptr
=
inputs_batch_
[
i
].
im_data_
.
data
();
for
(
int
cur_channel
=
c
-
1
;
cur_channel
>=
0
;
--
cur_channel
)
{
float
*
temp_ptr
=
temp_buffer
.
data
();
float
*
ptr
=
inputs_batch_
[
i
].
im_data_
.
data
();
for
(
int
cur_channel
=
c
-
1
;
cur_channel
>=
0
;
--
cur_channel
)
{
int
ori_pos
=
cur_channel
*
h
*
w
+
(
h
-
1
)
*
w
;
int
des_pos
=
cur_channel
*
max_h
*
max_w
+
(
h
-
1
)
*
max_w
;
for
(
int
start_pos
=
ori_pos
;
start_pos
>=
cur_channel
*
h
*
w
;
start_pos
-=
w
,
des_pos
-=
max_w
)
{
memcpy
(
temp_ptr
+
des_pos
,
ptr
+
start_pos
,
w
*
sizeof
(
float
));
int
last_pos
=
cur_channel
*
h
*
w
;
for
(;
ori_pos
>=
last_pos
;
ori_pos
-=
w
,
des_pos
-=
max_w
)
{
memcpy
(
temp_ptr
+
des_pos
,
ptr
+
ori_pos
,
w
*
sizeof
(
float
));
}
}
inputs_batch_
[
i
].
im_data_
.
swap
(
temp_buffer
);
...
...
@@ -387,16 +390,20 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<DetResult>
auto
im_tensor
=
predictor_
->
GetInputTensor
(
"image"
);
im_tensor
->
Reshape
({
batch_size
,
3
,
h
,
w
});
std
::
vector
<
float
>
inputs_data
(
batch_size
*
3
*
h
*
w
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
im_data_
.
begin
(),
inputs_batch_
[
i
].
im_data_
.
end
(),
inputs_data
.
begin
()
+
i
*
3
*
h
*
w
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
im_data_
.
begin
(),
inputs_batch_
[
i
].
im_data_
.
end
(),
inputs_data
.
begin
()
+
i
*
3
*
h
*
w
);
}
im_tensor
->
copy_from_cpu
(
inputs_data
.
data
());
if
(
name
==
"YOLOv3"
)
{
auto
im_size_tensor
=
predictor_
->
GetInputTensor
(
"im_size"
);
im_size_tensor
->
Reshape
({
batch_size
,
2
});
std
::
vector
<
int
>
inputs_data_size
(
batch_size
*
2
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
){
std
::
copy
(
inputs_batch_
[
i
].
ori_im_size_
.
begin
(),
inputs_batch_
[
i
].
ori_im_size_
.
end
(),
inputs_data_size
.
begin
()
+
2
*
i
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
ori_im_size_
.
begin
(),
inputs_batch_
[
i
].
ori_im_size_
.
end
(),
inputs_data_size
.
begin
()
+
2
*
i
);
}
im_size_tensor
->
copy_from_cpu
(
inputs_data_size
.
data
());
}
else
if
(
name
==
"FasterRCNN"
||
name
==
"MaskRCNN"
)
{
...
...
@@ -407,7 +414,7 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<DetResult>
std
::
vector
<
float
>
im_info
(
3
*
batch_size
);
std
::
vector
<
float
>
im_shape
(
3
*
batch_size
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
float
ori_h
=
static_cast
<
float
>
(
inputs_batch_
[
i
].
ori_im_size_
[
0
]);
float
ori_w
=
static_cast
<
float
>
(
inputs_batch_
[
i
].
ori_im_size_
[
1
]);
float
new_h
=
static_cast
<
float
>
(
inputs_batch_
[
i
].
new_im_size_
[
0
]);
...
...
@@ -444,9 +451,9 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<DetResult>
int
num_boxes
=
size
/
6
;
// 解析预测框box
for
(
int
i
=
0
;
i
<
lod_vector
[
0
].
size
()
-
1
;
++
i
)
{
for
(
int
j
=
lod_vector
[
0
][
i
];
j
<
lod_vector
[
0
][
i
+
1
];
++
j
)
{
for
(
int
j
=
lod_vector
[
0
][
i
];
j
<
lod_vector
[
0
][
i
+
1
];
++
j
)
{
Box
box
;
box
.
category_id
=
static_cast
<
int
>
(
round
(
output_box
[
j
*
6
]));
box
.
category_id
=
static_cast
<
int
>
(
round
(
output_box
[
j
*
6
]));
box
.
category
=
labels
[
box
.
category_id
];
box
.
score
=
output_box
[
j
*
6
+
1
];
float
xmin
=
output_box
[
j
*
6
+
2
];
...
...
@@ -456,7 +463,7 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<DetResult>
float
w
=
xmax
-
xmin
+
1
;
float
h
=
ymax
-
ymin
+
1
;
box
.
coordinate
=
{
xmin
,
ymin
,
w
,
h
};
result
[
i
].
boxes
.
push_back
(
std
::
move
(
box
));
(
*
result
)
[
i
].
boxes
.
push_back
(
std
::
move
(
box
));
}
}
...
...
@@ -474,11 +481,13 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<DetResult>
output_mask
.
resize
(
masks_size
);
output_mask_tensor
->
copy_to_cpu
(
output_mask
.
data
());
int
mask_idx
=
0
;
for
(
int
i
=
0
;
i
<
lod_vector
[
0
].
size
()
-
1
;
++
i
)
{
result
[
i
].
mask_resolution
=
output_mask_shape
[
2
];
for
(
int
j
=
0
;
j
<
result
[
i
].
boxes
.
size
();
++
j
)
{
Box
*
box
=
&
result
[
i
].
boxes
[
j
];
auto
begin_mask
=
output_mask
.
begin
()
+
(
mask_idx
*
classes
+
box
->
category_id
)
*
mask_pixels
;
for
(
int
i
=
0
;
i
<
lod_vector
[
0
].
size
()
-
1
;
++
i
)
{
(
*
result
)[
i
].
mask_resolution
=
output_mask_shape
[
2
];
for
(
int
j
=
0
;
j
<
(
*
result
)[
i
].
boxes
.
size
();
++
j
)
{
Box
*
box
=
&
(
*
result
)[
i
].
boxes
[
j
];
int
category_id
=
box
->
category_id
;
auto
begin_mask
=
output_mask
.
begin
()
+
(
mask_idx
*
classes
+
category_id
)
*
mask_pixels
;
auto
end_mask
=
begin_mask
+
mask_pixels
;
box
->
mask
.
data
.
assign
(
begin_mask
,
end_mask
);
box
->
mask
.
shape
=
{
static_cast
<
int
>
(
box
->
coordinate
[
2
]),
...
...
@@ -495,13 +504,11 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
inputs_
.
clear
();
if
(
type
==
"classifier"
)
{
std
::
cerr
<<
"Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
else
if
(
type
==
"detector"
)
{
std
::
cerr
<<
"Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
<<
std
::
endl
;
"function predict()!"
<<
std
::
endl
;
return
false
;
}
...
...
@@ -599,41 +606,43 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
return
true
;
}
bool
Model
::
predict
(
const
std
::
vector
<
cv
::
Mat
>
&
im_batch
,
std
::
vector
<
SegResult
>
&
result
,
int
thread_num
)
{
for
(
auto
&
inputs
:
inputs_batch_
)
{
bool
Model
::
predict
(
const
std
::
vector
<
cv
::
Mat
>&
im_batch
,
std
::
vector
<
SegResult
>*
result
,
int
thread_num
)
{
for
(
auto
&
inputs
:
inputs_batch_
)
{
inputs
.
clear
();
}
if
(
type
==
"classifier"
)
{
std
::
cerr
<<
"Loading model is a 'classifier', ClsResult should be passed "
"to function predict()!"
<<
std
::
endl
;
"to function predict()!"
<<
std
::
endl
;
return
false
;
}
else
if
(
type
==
"detector"
)
{
std
::
cerr
<<
"Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
<<
std
::
endl
;
"function predict()!"
<<
std
::
endl
;
return
false
;
}
// 处理输入图像
if
(
!
preprocess
(
im_batch
,
inputs_batch_
,
thread_num
))
{
if
(
!
preprocess
(
im_batch
,
&
inputs_batch_
,
thread_num
))
{
std
::
cerr
<<
"Preprocess failed!"
<<
std
::
endl
;
return
false
;
}
int
batch_size
=
im_batch
.
size
();
result
.
clear
();
result
.
resize
(
batch_size
);
(
*
result
)
.
clear
();
(
*
result
)
.
resize
(
batch_size
);
int
h
=
inputs_batch_
[
0
].
new_im_size_
[
0
];
int
w
=
inputs_batch_
[
0
].
new_im_size_
[
1
];
auto
im_tensor
=
predictor_
->
GetInputTensor
(
"image"
);
im_tensor
->
Reshape
({
batch_size
,
3
,
h
,
w
});
std
::
vector
<
float
>
inputs_data
(
batch_size
*
3
*
h
*
w
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
im_data_
.
begin
(),
inputs_batch_
[
i
].
im_data_
.
end
(),
inputs_data
.
begin
()
+
i
*
3
*
h
*
w
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
copy
(
inputs_batch_
[
i
].
im_data_
.
begin
(),
inputs_batch_
[
i
].
im_data_
.
end
(),
inputs_data
.
begin
()
+
i
*
3
*
h
*
w
);
}
im_tensor
->
copy_from_cpu
(
inputs_data
.
data
());
//im_tensor->copy_from_cpu(inputs_.im_data_.data());
//
im_tensor->copy_from_cpu(inputs_.im_data_.data());
// 使用加载的模型进行预测
predictor_
->
ZeroCopyRun
();
...
...
@@ -652,13 +661,15 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<SegResult>
auto
output_labels_iter
=
output_labels
.
begin
();
int
single_batch_size
=
size
/
batch_size
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
result
[
i
].
label_map
.
data
.
resize
(
single_batch_size
);
result
[
i
].
label_map
.
shape
.
push_back
(
1
);
for
(
int
j
=
1
;
j
<
output_label_shape
.
size
();
++
j
)
{
result
[
i
].
label_map
.
shape
.
push_back
(
output_label_shape
[
j
]);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
(
*
result
)
[
i
].
label_map
.
data
.
resize
(
single_batch_size
);
(
*
result
)
[
i
].
label_map
.
shape
.
push_back
(
1
);
for
(
int
j
=
1
;
j
<
output_label_shape
.
size
();
++
j
)
{
(
*
result
)
[
i
].
label_map
.
shape
.
push_back
(
output_label_shape
[
j
]);
}
std
::
copy
(
output_labels_iter
+
i
*
single_batch_size
,
output_labels_iter
+
(
i
+
1
)
*
single_batch_size
,
result
[
i
].
label_map
.
data
.
data
());
std
::
copy
(
output_labels_iter
+
i
*
single_batch_size
,
output_labels_iter
+
(
i
+
1
)
*
single_batch_size
,
(
*
result
)[
i
].
label_map
.
data
.
data
());
}
// 获取预测置信度scoremap
...
...
@@ -674,28 +685,30 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<SegResult>
auto
output_scores_iter
=
output_scores
.
begin
();
int
single_batch_score_size
=
size
/
batch_size
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
result
[
i
].
score_map
.
data
.
resize
(
single_batch_score_size
);
result
[
i
].
score_map
.
shape
.
push_back
(
1
);
for
(
int
j
=
1
;
j
<
output_score_shape
.
size
();
++
j
)
{
result
[
i
].
score_map
.
shape
.
push_back
(
output_score_shape
[
j
]);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
(
*
result
)
[
i
].
score_map
.
data
.
resize
(
single_batch_score_size
);
(
*
result
)
[
i
].
score_map
.
shape
.
push_back
(
1
);
for
(
int
j
=
1
;
j
<
output_score_shape
.
size
();
++
j
)
{
(
*
result
)
[
i
].
score_map
.
shape
.
push_back
(
output_score_shape
[
j
]);
}
std
::
copy
(
output_scores_iter
+
i
*
single_batch_score_size
,
output_scores_iter
+
(
i
+
1
)
*
single_batch_score_size
,
result
[
i
].
score_map
.
data
.
data
());
std
::
copy
(
output_scores_iter
+
i
*
single_batch_score_size
,
output_scores_iter
+
(
i
+
1
)
*
single_batch_score_size
,
(
*
result
)[
i
].
score_map
.
data
.
data
());
}
// 解析输出结果到原图大小
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
vector
<
uint8_t
>
label_map
(
result
[
i
].
label_map
.
data
.
begin
(),
result
[
i
].
label_map
.
data
.
end
());
cv
::
Mat
mask_label
(
result
[
i
].
label_map
.
shape
[
1
],
result
[
i
].
label_map
.
shape
[
2
],
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
std
::
vector
<
uint8_t
>
label_map
(
(
*
result
)
[
i
].
label_map
.
data
.
begin
(),
(
*
result
)
[
i
].
label_map
.
data
.
end
());
cv
::
Mat
mask_label
(
(
*
result
)
[
i
].
label_map
.
shape
[
1
],
(
*
result
)
[
i
].
label_map
.
shape
[
2
],
CV_8UC1
,
label_map
.
data
());
cv
::
Mat
mask_score
(
result
[
i
].
score_map
.
shape
[
2
],
result
[
i
].
score_map
.
shape
[
3
],
cv
::
Mat
mask_score
(
(
*
result
)
[
i
].
score_map
.
shape
[
2
],
(
*
result
)
[
i
].
score_map
.
shape
[
3
],
CV_32FC1
,
result
[
i
].
score_map
.
data
.
data
());
(
*
result
)
[
i
].
score_map
.
data
.
data
());
int
idx
=
1
;
int
len_postprocess
=
inputs_batch_
[
i
].
im_size_before_resize_
.
size
();
for
(
std
::
vector
<
std
::
string
>::
reverse_iterator
iter
=
...
...
@@ -703,14 +716,16 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<SegResult>
iter
!=
inputs_batch_
[
i
].
reshape_order_
.
rend
();
++
iter
)
{
if
(
*
iter
==
"padding"
)
{
auto
before_shape
=
inputs_batch_
[
i
].
im_size_before_resize_
[
len_postprocess
-
idx
];
auto
before_shape
=
inputs_batch_
[
i
].
im_size_before_resize_
[
len_postprocess
-
idx
];
inputs_batch_
[
i
].
im_size_before_resize_
.
pop_back
();
auto
padding_w
=
before_shape
[
0
];
auto
padding_h
=
before_shape
[
1
];
mask_label
=
mask_label
(
cv
::
Rect
(
0
,
0
,
padding_h
,
padding_w
));
mask_score
=
mask_score
(
cv
::
Rect
(
0
,
0
,
padding_h
,
padding_w
));
}
else
if
(
*
iter
==
"resize"
)
{
auto
before_shape
=
inputs_batch_
[
i
].
im_size_before_resize_
[
len_postprocess
-
idx
];
auto
before_shape
=
inputs_batch_
[
i
].
im_size_before_resize_
[
len_postprocess
-
idx
];
inputs_batch_
[
i
].
im_size_before_resize_
.
pop_back
();
auto
resize_w
=
before_shape
[
0
];
auto
resize_h
=
before_shape
[
1
];
...
...
@@ -729,14 +744,14 @@ bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<SegResult>
}
++
idx
;
}
result
[
i
].
label_map
.
data
.
assign
(
mask_label
.
begin
<
uint8_t
>
(),
(
*
result
)
[
i
].
label_map
.
data
.
assign
(
mask_label
.
begin
<
uint8_t
>
(),
mask_label
.
end
<
uint8_t
>
());
result
[
i
].
label_map
.
shape
=
{
mask_label
.
rows
,
mask_label
.
cols
};
result
[
i
].
score_map
.
data
.
assign
(
mask_score
.
begin
<
float
>
(),
(
*
result
)
[
i
].
label_map
.
shape
=
{
mask_label
.
rows
,
mask_label
.
cols
};
(
*
result
)
[
i
].
score_map
.
data
.
assign
(
mask_score
.
begin
<
float
>
(),
mask_score
.
end
<
float
>
());
result
[
i
].
score_map
.
shape
=
{
mask_score
.
rows
,
mask_score
.
cols
};
(
*
result
)
[
i
].
score_map
.
shape
=
{
mask_score
.
rows
,
mask_score
.
cols
};
}
return
true
;
}
}
// namesp
ce of
PaddleX
}
// namesp
ace
PaddleX
deploy/cpp/src/visualize.cpp
浏览文件 @
01e54a1f
...
...
@@ -145,4 +145,4 @@ std::string generate_save_path(const std::string& save_dir,
std
::
string
image_name
(
file_path
.
substr
(
pos
+
1
));
return
save_dir
+
OS_PATH_SEP
+
image_name
;
}
}
// namespace
of
PaddleX
}
// namespace PaddleX
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录