yolo_v3.py 19.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from collections import OrderedDict
F
FlyingQianMM 已提交
19 20 21 22 23 24 25 26 27 28
from .ops import MultiClassNMS, MultiClassSoftNMS, MatrixNMS
from .ops import DropBlock
from .loss.yolo_loss import YOLOv3Loss
from .loss.iou_loss import IouLoss
from .loss.iou_aware_loss import IouAwareLoss
from .iou_aware import get_iou_aware_score
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
J
jiangjiajun 已提交
29 30 31


class YOLOv3:
F
FlyingQianMM 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    def __init__(
            self,
            backbone,
            mode='train',
            # YOLOv3Head
            num_classes=80,
            anchors=None,
            anchor_masks=None,
            coord_conv=False,
            iou_aware=False,
            iou_aware_factor=0.4,
            scale_x_y=1.,
            spp=False,
            drop_block=False,
            use_matrix_nms=False,
            # YOLOv3Loss
            batch_size=8,
            ignore_threshold=0.7,
            label_smooth=False,
            use_fine_grained_loss=False,
            use_iou_loss=False,
            iou_loss_weight=2.5,
            iou_aware_loss_weight=1.0,
            max_height=608,
            max_width=608,
            # NMS
            nms_score_threshold=0.01,
            nms_topk=1000,
            nms_keep_topk=100,
            nms_iou_threshold=0.45,
            fixed_input_shape=None):
J
jiangjiajun 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
        if anchors is None:
            anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                       [59, 119], [116, 90], [156, 198], [373, 326]]
        if anchor_masks is None:
            anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        self._parse_anchors(anchors)
        self.mode = mode
        self.num_classes = num_classes
        self.backbone = backbone
        self.norm_decay = 0.0
        self.prefix_name = ''
F
FlyingQianMM 已提交
76
        self.use_fine_grained_loss = use_fine_grained_loss
C
Channingss 已提交
77
        self.fixed_input_shape = fixed_input_shape
F
FlyingQianMM 已提交
78 79 80 81 82 83
        self.coord_conv = coord_conv
        self.iou_aware = iou_aware
        self.iou_aware_factor = iou_aware_factor
        self.scale_x_y = scale_x_y
        self.use_spp = spp
        self.drop_block = drop_block
J
jiangjiajun 已提交
84

F
FlyingQianMM 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        if use_matrix_nms:
            self.nms = MatrixNMS(
                background_label=-1,
                keep_top_k=nms_keep_topk,
                normalized=False,
                score_threshold=nms_score_threshold,
                post_threshold=0.01)
        else:
            self.nms = MultiClassNMS(
                background_label=-1,
                keep_top_k=nms_keep_topk,
                nms_threshold=nms_iou_threshold,
                nms_top_k=nms_topk,
                normalized=False,
                score_threshold=nms_score_threshold)
        self.iou_loss = None
        self.iou_aware_loss = None
        if use_iou_loss:
            self.iou_loss = IouLoss(
                loss_weight=iou_loss_weight,
                max_height=max_height,
                max_width=max_width)
        if iou_aware:
            self.iou_aware_loss = IouAwareLoss(
                loss_weight=iou_aware_loss_weight,
                max_height=max_height,
                max_width=max_width)
        self.yolo_loss = YOLOv3Loss(
            batch_size=batch_size,
            ignore_thresh=ignore_threshold,
            scale_x_y=scale_x_y,
            label_smooth=label_smooth,
            use_fine_grained_loss=self.use_fine_grained_loss,
            iou_loss=self.iou_loss,
            iou_aware_loss=self.iou_aware_loss)
        self.conv_block_num = 2
        self.block_size = 3
        self.keep_prob = 0.9
        self.downsample = [32, 16, 8]
        self.clip_bbox = True

    def _head(self, input, is_train=True):
J
jiangjiajun 已提交
127
        outputs = []
F
FlyingQianMM 已提交
128 129

        # get last out_layer_num blocks in reverse order
J
jiangjiajun 已提交
130
        out_layer_num = len(self.anchor_masks)
F
FlyingQianMM 已提交
131
        blocks = input[-1:-out_layer_num - 1:-1]
J
jiangjiajun 已提交
132

F
FlyingQianMM 已提交
133
        route = None
J
jiangjiajun 已提交
134
        for i, block in enumerate(blocks):
F
FlyingQianMM 已提交
135
            if i > 0:  # perform concat in first 2 detection_block
J
jiangjiajun 已提交
136 137 138
                block = fluid.layers.concat(input=[route, block], axis=1)
            route, tip = self._detection_block(
                block,
F
FlyingQianMM 已提交
139 140 141 142 143
                channel=64 * (2**out_layer_num) // (2**i),
                is_first=i == 0,
                is_test=(not is_train),
                conv_block_num=self.conv_block_num,
                name=self.prefix_name + "yolo_block.{}".format(i))
J
jiangjiajun 已提交
144

F
FlyingQianMM 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            # out channel number = mask_num * (5 + class_num)
            if self.iou_aware:
                num_filters = len(self.anchor_masks[i]) * (
                    self.num_classes + 6)
            else:
                num_filters = len(self.anchor_masks[i]) * (
                    self.num_classes + 5)
            with fluid.name_scope('yolo_output'):
                block_out = fluid.layers.conv2d(
                    input=tip,
                    num_filters=num_filters,
                    filter_size=1,
                    stride=1,
                    padding=0,
                    act=None,
                    param_attr=ParamAttr(
                        name=self.prefix_name +
                        "yolo_output.{}.conv.weights".format(i)),
                    bias_attr=ParamAttr(
                        regularizer=L2Decay(0.),
                        name=self.prefix_name +
                        "yolo_output.{}.conv.bias".format(i)))
                outputs.append(block_out)
J
jiangjiajun 已提交
168 169

            if i < len(blocks) - 1:
F
FlyingQianMM 已提交
170
                # do not perform upsample in the last detection_block
J
jiangjiajun 已提交
171 172 173 174 175 176
                route = self._conv_bn(
                    input=route,
                    ch_out=256 // (2**i),
                    filter_size=1,
                    stride=1,
                    padding=0,
F
FlyingQianMM 已提交
177 178 179
                    is_test=(not is_train),
                    name=self.prefix_name + "yolo_transition.{}".format(i))
                # upsample
J
jiangjiajun 已提交
180
                route = self._upsample(route)
F
FlyingQianMM 已提交
181

J
jiangjiajun 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        return outputs

    def _parse_anchors(self, anchors):
        self.anchors = []
        self.mask_anchors = []

        assert len(anchors) > 0, "ANCHORS not set."
        assert len(self.anchor_masks) > 0, "ANCHOR_MASKS not set."

        for anchor in anchors:
            assert len(anchor) == 2, "anchor {} len should be 2".format(anchor)
            self.anchors.extend(anchor)

        anchor_num = len(anchors)
        for masks in self.anchor_masks:
            self.mask_anchors.append([])
            for mask in masks:
                assert mask < anchor_num, "anchor mask index overflow"
                self.mask_anchors[-1].extend(anchors[mask])

F
FlyingQianMM 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    def _create_tensor_from_numpy(self, numpy_array):
        paddle_array = fluid.layers.create_global_var(
            shape=numpy_array.shape, value=0., dtype=numpy_array.dtype)
        fluid.layers.assign(numpy_array, paddle_array)
        return paddle_array

    def _add_coord(self, input, is_test=True):
        if not self.coord_conv:
            return input

        # NOTE: here is used for exporting model for TensorRT inference,
        #       only support batch_size=1 for input shape should be fixed,
        #       and we create tensor with fixed shape from numpy array
        if is_test and input.shape[2] > 0 and input.shape[3] > 0:
            batch_size = 1
            grid_x = int(input.shape[3])
            grid_y = int(input.shape[2])
            idx_i = np.array(
                [[i / (grid_x - 1) * 2.0 - 1 for i in range(grid_x)]],
                dtype='float32')
            gi_np = np.repeat(idx_i, grid_y, axis=0)
            gi_np = np.reshape(gi_np, newshape=[1, 1, grid_y, grid_x])
            gi_np = np.tile(gi_np, reps=[batch_size, 1, 1, 1])

            x_range = self._create_tensor_from_numpy(gi_np.astype(np.float32))
            x_range.stop_gradient = True
            y_range = self._create_tensor_from_numpy(
                gi_np.transpose([0, 1, 3, 2]).astype(np.float32))
            y_range.stop_gradient = True

        # NOTE: in training mode, H and W is variable for random shape,
        #       implement add_coord with shape as Variable
        else:
            input_shape = fluid.layers.shape(input)
            b = input_shape[0]
            h = input_shape[2]
            w = input_shape[3]

            x_range = fluid.layers.range(0, w, 1, 'float32') / ((w - 1.) / 2.)
            x_range = x_range - 1.
            x_range = fluid.layers.unsqueeze(x_range, [0, 1, 2])
            x_range = fluid.layers.expand(x_range, [b, 1, h, 1])
            x_range.stop_gradient = True
            y_range = fluid.layers.transpose(x_range, [0, 1, 3, 2])
            y_range.stop_gradient = True

        return fluid.layers.concat([input, x_range, y_range], axis=1)

J
jiangjiajun 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    def _conv_bn(self,
                 input,
                 ch_out,
                 filter_size,
                 stride,
                 padding,
                 act='leaky',
                 is_test=False,
                 name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + '.conv.weights'),
            bias_attr=False)
        bn_name = name + '.bn'
        bn_param_attr = ParamAttr(
            regularizer=L2Decay(self.norm_decay), name=bn_name + '.scale')
        bn_bias_attr = ParamAttr(
            regularizer=L2Decay(self.norm_decay), name=bn_name + '.offset')
        out = fluid.layers.batch_norm(
            input=conv,
            act=None,
            is_test=is_test,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '.mean',
            moving_variance_name=bn_name + '.var')
        if act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        return out

F
FlyingQianMM 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    def _spp_module(self, input, is_test=True, name=""):
        output1 = input
        output2 = fluid.layers.pool2d(
            input=output1,
            pool_size=5,
            pool_stride=1,
            pool_padding=2,
            ceil_mode=False,
            pool_type='max')
        output3 = fluid.layers.pool2d(
            input=output1,
            pool_size=9,
            pool_stride=1,
            pool_padding=4,
            ceil_mode=False,
            pool_type='max')
        output4 = fluid.layers.pool2d(
            input=output1,
            pool_size=13,
            pool_stride=1,
            pool_padding=6,
            ceil_mode=False,
            pool_type='max')
        output = fluid.layers.concat(
            input=[output1, output2, output3, output4], axis=1)
        return output

J
jiangjiajun 已提交
312 313 314 315 316
    def _upsample(self, input, scale=2, name=None):
        out = fluid.layers.resize_nearest(
            input=input, scale=float(scale), name=name)
        return out

F
FlyingQianMM 已提交
317 318 319 320 321 322 323 324 325 326
    def _detection_block(self,
                         input,
                         channel,
                         conv_block_num=2,
                         is_first=False,
                         is_test=True,
                         name=None):
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2 in detection block {}" \
            .format(channel, name)
J
jiangjiajun 已提交
327 328

        conv = input
F
FlyingQianMM 已提交
329 330
        for j in range(conv_block_num):
            conv = self._add_coord(conv, is_test=is_test)
J
jiangjiajun 已提交
331 332 333 334 335 336 337
            conv = self._conv_bn(
                conv,
                channel,
                filter_size=1,
                stride=1,
                padding=0,
                is_test=is_test,
F
FlyingQianMM 已提交
338 339 340 341 342 343 344 345 346 347 348
                name='{}.{}.0'.format(name, j))
            if self.use_spp and is_first and j == 1:
                conv = self._spp_module(conv, is_test=is_test, name="spp")
                conv = self._conv_bn(
                    conv,
                    512,
                    filter_size=1,
                    stride=1,
                    padding=0,
                    is_test=is_test,
                    name='{}.{}.spp.conv'.format(name, j))
J
jiangjiajun 已提交
349 350 351 352 353 354 355
            conv = self._conv_bn(
                conv,
                channel * 2,
                filter_size=3,
                stride=1,
                padding=1,
                is_test=is_test,
F
FlyingQianMM 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
                name='{}.{}.1'.format(name, j))
            if self.drop_block and j == 0 and not is_first:
                conv = DropBlock(
                    conv,
                    block_size=self.block_size,
                    keep_prob=self.keep_prob,
                    is_test=is_test)

        if self.drop_block and is_first:
            conv = DropBlock(
                conv,
                block_size=self.block_size,
                keep_prob=self.keep_prob,
                is_test=is_test)
        conv = self._add_coord(conv, is_test=is_test)
J
jiangjiajun 已提交
371 372 373 374 375 376 377 378
        route = self._conv_bn(
            conv,
            channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
            name='{}.2'.format(name))
F
FlyingQianMM 已提交
379
        new_route = self._add_coord(route, is_test=is_test)
J
jiangjiajun 已提交
380
        tip = self._conv_bn(
F
FlyingQianMM 已提交
381
            new_route,
J
jiangjiajun 已提交
382 383 384 385 386 387 388 389
            channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
            name='{}.tip'.format(name))
        return route, tip

F
FlyingQianMM 已提交
390 391 392 393 394 395 396
    def _get_loss(self, inputs, gt_box, gt_label, gt_score, targets):
        loss = self.yolo_loss(inputs, gt_box, gt_label, gt_score, targets,
                              self.anchors, self.anchor_masks,
                              self.mask_anchors, self.num_classes,
                              self.prefix_name)
        total_loss = fluid.layers.sum(list(loss.values()))
        return total_loss
J
jiangjiajun 已提交
397 398 399 400 401

    def _get_prediction(self, inputs, im_size):
        boxes = []
        scores = []
        for i, input in enumerate(inputs):
F
FlyingQianMM 已提交
402 403 404 405 406 407 408 409
            if self.iou_aware:
                input = get_iou_aware_score(input,
                                            len(self.anchor_masks[i]),
                                            self.num_classes,
                                            self.iou_aware_factor)
            scale_x_y = self.scale_x_y if not isinstance(
                self.scale_x_y, Sequence) else self.scale_x_y[i]

J
jiangjiajun 已提交
410 411 412 413 414
            box, score = fluid.layers.yolo_box(
                x=input,
                img_size=im_size,
                anchors=self.mask_anchors[i],
                class_num=self.num_classes,
F
FlyingQianMM 已提交
415 416 417 418 419
                conf_thresh=self.nms.score_threshold,
                downsample_ratio=self.downsample[i],
                name=self.prefix_name + 'yolo_box' + str(i),
                clip_bbox=self.clip_bbox,
                scale_x_y=self.scale_x_y)
J
jiangjiajun 已提交
420 421
            boxes.append(box)
            scores.append(fluid.layers.transpose(score, perm=[0, 2, 1]))
F
FlyingQianMM 已提交
422

J
jiangjiajun 已提交
423 424
        yolo_boxes = fluid.layers.concat(boxes, axis=1)
        yolo_scores = fluid.layers.concat(scores, axis=2)
F
FlyingQianMM 已提交
425 426 427
        if type(self.nms) is MultiClassSoftNMS:
            yolo_scores = fluid.layers.transpose(yolo_scores, perm=[0, 2, 1])
        pred = self.nms(bboxes=yolo_boxes, scores=yolo_scores)
J
jiangjiajun 已提交
428 429 430 431
        return pred

    def generate_inputs(self):
        inputs = OrderedDict()
C
Channingss 已提交
432
        if self.fixed_input_shape is not None:
433 434 435
            input_shape = [
                None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
            ]
C
Channingss 已提交
436 437 438 439 440
            inputs['image'] = fluid.data(
                dtype='float32', shape=input_shape, name='image')
        else:
            inputs['image'] = fluid.data(
                dtype='float32', shape=[None, 3, None, None], name='image')
J
jiangjiajun 已提交
441 442 443 444 445 446 447 448 449
        if self.mode == 'train':
            inputs['gt_box'] = fluid.data(
                dtype='float32', shape=[None, None, 4], name='gt_box')
            inputs['gt_label'] = fluid.data(
                dtype='int32', shape=[None, None], name='gt_label')
            inputs['gt_score'] = fluid.data(
                dtype='float32', shape=[None, None], name='gt_score')
            inputs['im_size'] = fluid.data(
                dtype='int32', shape=[None, 2], name='im_size')
F
FlyingQianMM 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            if self.use_fine_grained_loss:
                downsample = 32
                for i, mask in enumerate(self.anchor_masks):
                    if self.fixed_input_shape is not None:
                        target_shape = [
                            self.fixed_input_shape[1] // downsample,
                            self.fixed_input_shape[0] // downsample
                        ]
                    else:
                        target_shape = [None, None]
                    inputs['target{}'.format(i)] = fluid.data(
                        dtype='float32',
                        lod_level=0,
                        shape=[
                            None, len(mask), 6 + self.num_classes,
                            target_shape[0], target_shape[1]
                        ],
                        name='target{}'.format(i))
                    downsample //= 2
J
jiangjiajun 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        elif self.mode == 'eval':
            inputs['im_size'] = fluid.data(
                dtype='int32', shape=[None, 2], name='im_size')
            inputs['im_id'] = fluid.data(
                dtype='int32', shape=[None, 1], name='im_id')
            inputs['gt_box'] = fluid.data(
                dtype='float32', shape=[None, None, 4], name='gt_box')
            inputs['gt_label'] = fluid.data(
                dtype='int32', shape=[None, None], name='gt_label')
            inputs['is_difficult'] = fluid.data(
                dtype='int32', shape=[None, None], name='is_difficult')
        elif self.mode == 'test':
            inputs['im_size'] = fluid.data(
                dtype='int32', shape=[None, 2], name='im_size')
        return inputs

    def build_net(self, inputs):
        image = inputs['image']
        feats = self.backbone(image)
        if isinstance(feats, OrderedDict):
            feat_names = list(feats.keys())
            feats = [feats[name] for name in feat_names]

F
FlyingQianMM 已提交
492
        head_outputs = self._head(feats, self.mode == 'train')
J
jiangjiajun 已提交
493 494 495 496 497
        if self.mode == 'train':
            gt_box = inputs['gt_box']
            gt_label = inputs['gt_label']
            gt_score = inputs['gt_score']
            im_size = inputs['im_size']
F
FlyingQianMM 已提交
498 499 500 501 502 503 504 505
            num_boxes = fluid.layers.shape(gt_box)[1]
            im_size_wh = fluid.layers.reverse(im_size, axis=1)
            whwh = fluid.layers.concat([im_size_wh, im_size_wh], axis=1)
            whwh = fluid.layers.unsqueeze(whwh, axes=[1])
            whwh = fluid.layers.expand(whwh, expand_times=[1, num_boxes, 1])
            whwh = fluid.layers.cast(whwh, dtype='float32')
            whwh.stop_gradient = True
            normalized_box = fluid.layers.elementwise_div(gt_box, whwh)
F
FlyingQianMM 已提交
506 507 508 509 510 511 512

            targets = []
            if self.use_fine_grained_loss:
                for i, mask in enumerate(self.anchor_masks):
                    k = 'target{}'.format(i)
                    if k in inputs:
                        targets.append(inputs[k])
J
jiangjiajun 已提交
513
            return self._get_loss(head_outputs, normalized_box, gt_label,
F
FlyingQianMM 已提交
514
                                  gt_score, targets)
J
jiangjiajun 已提交
515 516 517
        else:
            im_size = inputs['im_size']
            return self._get_prediction(head_outputs, im_size)