detector.cpp 5.7 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>
J
jack 已提交
16
#include <omp.h>
C
Channingss 已提交
17

J
jack 已提交
18
#include <algorithm>
J
jack 已提交
19
#include <chrono>  // NOLINT
C
Channingss 已提交
20 21 22 23
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
J
jack 已提交
24
#include <utility>
C
Channingss 已提交
25 26 27 28

#include "include/paddlex/paddlex.h"
#include "include/paddlex/visualize.h"

J
jack 已提交
29
using namespace std::chrono;  // NOLINT
J
jack 已提交
30

C
Channingss 已提交
31 32 33 34 35 36 37 38
DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_bool(use_trt, false, "Infering with TensorRT");
DEFINE_int32(gpu_id, 0, "GPU card id");
DEFINE_string(key, "", "key of encryption");
DEFINE_string(image, "", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
DEFINE_string(save_dir, "output", "Path to save visualized image");
J
jack 已提交
39
DEFINE_int32(batch_size, 1, "Batch size of infering");
J
jack 已提交
40 41 42 43 44 45
DEFINE_double(threshold,
              0.5,
              "The minimum scores of target boxes which are shown");
DEFINE_int32(thread_num,
             omp_get_num_procs(),
             "Number of preprocessing threads");
J
jack 已提交
46
DEFINE_bool(use_ir_optim, true, "use ir optimization");
C
Channingss 已提交
47 48 49 50

int main(int argc, char** argv) {
  // 解析命令行参数
  google::ParseCommandLineFlags(&argc, &argv, true);
J
jack 已提交
51

C
Channingss 已提交
52 53 54 55 56 57 58 59 60 61
  if (FLAGS_model_dir == "") {
    std::cerr << "--model_dir need to be defined" << std::endl;
    return -1;
  }
  if (FLAGS_image == "" & FLAGS_image_list == "") {
    std::cerr << "--image or --image_list need to be defined" << std::endl;
    return -1;
  }
  // 加载模型
  PaddleX::Model model;
J
jack 已提交
62 63 64 65
  model.Init(FLAGS_model_dir,
             FLAGS_use_gpu,
             FLAGS_use_trt,
             FLAGS_gpu_id,
J
jack 已提交
66 67
             FLAGS_key,
             FLAGS_use_ir_optim);
J
jack 已提交
68
  int imgs = 1;
C
Channingss 已提交
69 70 71 72 73 74 75 76 77
  std::string save_dir = "output";
  // 进行预测
  if (FLAGS_image_list != "") {
    std::ifstream inf(FLAGS_image_list);
    if (!inf) {
      std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
      return -1;
    }
    std::string image_path;
J
jack 已提交
78
    std::vector<std::string> image_paths;
C
Channingss 已提交
79
    while (getline(inf, image_path)) {
J
jack 已提交
80 81 82
      image_paths.push_back(image_path);
    }
    imgs = image_paths.size();
J
jack 已提交
83 84 85
    for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
      int im_vec_size =
          std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
J
jack 已提交
86
      std::vector<cv::Mat> im_vec(im_vec_size - i);
J
jack 已提交
87 88
      std::vector<PaddleX::DetResult> results(im_vec_size - i,
                                              PaddleX::DetResult());
J
jack 已提交
89 90
      int thread_num = std::min(FLAGS_thread_num, im_vec_size - i);
      #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
91
      for (int j = i; j < im_vec_size; ++j) {
J
jack 已提交
92 93
        im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
      }
J
jack 已提交
94 95 96 97 98
      model.predict(im_vec, &results, thread_num);
      // 输出结果目标框
      for (int j = 0; j < im_vec_size - i; ++j) {
        for (int k = 0; k < results[j].boxes.size(); ++k) {
          std::cout << "image file: " << image_paths[i + j] << ", ";
J
jack 已提交
99 100
          std::cout << "predict label: " << results[j].boxes[k].category
                    << ", label_id:" << results[j].boxes[k].category_id
J
jack 已提交
101 102
                    << ", score: " << results[j].boxes[k].score
                    << ", box(xmin, ymin, w, h):("
J
jack 已提交
103 104 105 106 107
                    << results[j].boxes[k].coordinate[0] << ", "
                    << results[j].boxes[k].coordinate[1] << ", "
                    << results[j].boxes[k].coordinate[2] << ", "
                    << results[j].boxes[k].coordinate[3] << ")" << std::endl;
        }
C
Channingss 已提交
108 109
      }
      // 可视化
J
jack 已提交
110 111
      for (int j = 0; j < im_vec_size - i; ++j) {
        cv::Mat vis_img = PaddleX::Visualize(
J
jack 已提交
112
            im_vec[j], results[j], model.labels, FLAGS_threshold);
J
jack 已提交
113 114 115 116 117
        std::string save_path =
            PaddleX::generate_save_path(FLAGS_save_dir, image_paths[i + j]);
        cv::imwrite(save_path, vis_img);
        std::cout << "Visualized output saved as " << save_path << std::endl;
      }
C
Channingss 已提交
118 119 120 121 122
    }
  } else {
    PaddleX::DetResult result;
    cv::Mat im = cv::imread(FLAGS_image, 1);
    model.predict(im, &result);
J
jack 已提交
123
    // 输出结果目标框
C
Channingss 已提交
124
    for (int i = 0; i < result.boxes.size(); ++i) {
J
jack 已提交
125
      std::cout << "image file: " << FLAGS_image << std::endl;
C
Channingss 已提交
126 127
      std::cout << ", predict label: " << result.boxes[i].category
                << ", label_id:" << result.boxes[i].category_id
J
jack 已提交
128 129 130
                << ", score: " << result.boxes[i].score
                << ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0]
                << ", " << result.boxes[i].coordinate[1] << ", "
C
Channingss 已提交
131 132 133 134 135 136
                << result.boxes[i].coordinate[2] << ", "
                << result.boxes[i].coordinate[3] << ")" << std::endl;
    }

    // 可视化
    cv::Mat vis_img =
J
jack 已提交
137
        PaddleX::Visualize(im, result, model.labels, FLAGS_threshold);
C
Channingss 已提交
138 139 140 141 142 143
    std::string save_path =
        PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image);
    cv::imwrite(save_path, vis_img);
    result.clear();
    std::cout << "Visualized output saved as " << save_path << std::endl;
  }
J
jack 已提交
144

C
Channingss 已提交
145 146
  return 0;
}