deeplabv3p.py 16.4 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

import paddle.fluid as fluid
from .model_utils.libs import scope, name_scope
from .model_utils.libs import bn, bn_relu, relu
from .model_utils.libs import conv, max_pool, deconv
from .model_utils.libs import separate_conv
from .model_utils.libs import sigmoid_to_softmax
from .model_utils.loss import softmax_with_loss
from .model_utils.loss import dice_loss
from .model_utils.loss import bce_loss
import paddlex.utils.logging as logging
from paddlex.cv.nets.xception import Xception
from paddlex.cv.nets.mobilenet_v2 import MobileNetV2


class DeepLabv3p(object):
    """实现DeepLabv3+模型
    `"Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
    <https://arxiv.org/abs/1802.02611>`

    Args:
        num_classes (int): 类别数。
        backbone (paddlex.cv.nets): 神经网络,实现DeepLabv3+特征图的计算。
        mode (str): 网络运行模式,根据mode构建网络的输入和返回。
            当mode为'train'时,输入为image(-1, 3, -1, -1)和label (-1, 1, -1, -1) 返回loss。
            当mode为'train'时,输入为image (-1, 3, -1, -1)和label  (-1, 1, -1, -1),返回loss,
            pred (与网络输入label 相同大小的预测结果,值代表相应的类别),label,mask(非忽略值的mask,
            与label相同大小,bool类型)。
            当mode为'test'时,输入为image(-1, 3, -1, -1)返回pred (-1, 1, -1, -1)和
            logit (-1, num_classes, -1, -1) 通道维上代表每一类的概率值。
        output_stride (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。
        aspp_with_sep_conv (bool): 在asspp模块是否采用separable convolutions。
        decoder_use_sep_conv (bool): decoder模块是否采用separable convolutions。
        encoder_with_aspp (bool): 是否在encoder阶段采用aspp模块。
        enable_decoder (bool): 是否使用decoder模块。
        use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。
        use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。
            当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。
        class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
            num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
            自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
            即平时使用的交叉熵损失函数。
        ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。
C
Channingss 已提交
64
        fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
J
jiangjiajun 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    Raises:
        ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
        ValueError: class_weight为list, 但长度不等于num_class。
            class_weight为str, 但class_weight.low()不等于dynamic。
        TypeError: class_weight不为None时,其类型不是list或str。
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 mode='train',
                 output_stride=16,
                 aspp_with_sep_conv=True,
                 decoder_use_sep_conv=True,
                 encoder_with_aspp=True,
                 enable_decoder=True,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
C
Channingss 已提交
85 86
                 ignore_index=255,
                 fixed_input_shape=None):
J
jiangjiajun 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        # dice_loss或bce_loss只适用两类分割中
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.num_classes = num_classes
        self.backbone = backbone
        self.mode = mode
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.output_stride = output_stride
        self.aspp_with_sep_conv = aspp_with_sep_conv
        self.decoder_use_sep_conv = decoder_use_sep_conv
        self.encoder_with_aspp = encoder_with_aspp
        self.enable_decoder = enable_decoder
C
Channingss 已提交
120
        self.fixed_input_shape = fixed_input_shape
J
jiangjiajun 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    def _encoder(self, input):
        # 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv
        # ASPP_WITH_SEP_CONV:默认为真,使用depthwise可分离卷积,否则使用普通卷积
        # OUTPUT_STRIDE: 下采样倍数,8或16,决定aspp_ratios大小
        # aspp_ratios:ASPP模块空洞卷积的采样率

        if self.output_stride == 16:
            aspp_ratios = [6, 12, 18]
        elif self.output_stride == 8:
            aspp_ratios = [12, 24, 36]
        else:
            raise Exception("DeepLabv3p only support stride 8 or 16")

        param_attr = fluid.ParamAttr(
            name=name_scope + 'weights',
            regularizer=None,
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
        with scope('encoder'):
            channel = 256
            with scope("image_pool"):
                image_avg = fluid.layers.reduce_mean(
                    input, [2, 3], keep_dim=True)
                image_avg = bn_relu(
                    conv(
                        image_avg,
                        channel,
                        1,
                        1,
                        groups=1,
                        padding=0,
                        param_attr=param_attr))
                input_shape = fluid.layers.shape(input)
                image_avg = fluid.layers.resize_bilinear(
                    image_avg, input_shape[2:])

            with scope("aspp0"):
                aspp0 = bn_relu(
                    conv(
                        input,
                        channel,
                        1,
                        1,
                        groups=1,
                        padding=0,
                        param_attr=param_attr))
            with scope("aspp1"):
                if self.aspp_with_sep_conv:
                    aspp1 = separate_conv(
                        input,
                        channel,
                        1,
                        3,
                        dilation=aspp_ratios[0],
                        act=relu)
                else:
                    aspp1 = bn_relu(
                        conv(
                            input,
                            channel,
                            stride=1,
                            filter_size=3,
                            dilation=aspp_ratios[0],
                            padding=aspp_ratios[0],
                            param_attr=param_attr))
            with scope("aspp2"):
                if self.aspp_with_sep_conv:
                    aspp2 = separate_conv(
                        input,
                        channel,
                        1,
                        3,
                        dilation=aspp_ratios[1],
                        act=relu)
                else:
                    aspp2 = bn_relu(
                        conv(
                            input,
                            channel,
                            stride=1,
                            filter_size=3,
                            dilation=aspp_ratios[1],
                            padding=aspp_ratios[1],
                            param_attr=param_attr))
            with scope("aspp3"):
                if self.aspp_with_sep_conv:
                    aspp3 = separate_conv(
                        input,
                        channel,
                        1,
                        3,
                        dilation=aspp_ratios[2],
                        act=relu)
                else:
                    aspp3 = bn_relu(
                        conv(
                            input,
                            channel,
                            stride=1,
                            filter_size=3,
                            dilation=aspp_ratios[2],
                            padding=aspp_ratios[2],
                            param_attr=param_attr))
            with scope("concat"):
                data = fluid.layers.concat(
                    [image_avg, aspp0, aspp1, aspp2, aspp3], axis=1)
                data = bn_relu(
                    conv(
                        data,
                        channel,
                        1,
                        1,
                        groups=1,
                        padding=0,
                        param_attr=param_attr))
                data = fluid.layers.dropout(data, 0.9)
            return data

    def _decoder(self, encode_data, decode_shortcut):
        # 解码器配置
        # encode_data:编码器输出
        # decode_shortcut: 从backbone引出的分支, resize后与encode_data concat
        # decoder_use_sep_conv: 默认为真,则concat后连接两个可分离卷积,否则为普通卷积
        param_attr = fluid.ParamAttr(
            name=name_scope + 'weights',
            regularizer=None,
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
        with scope('decoder'):
            with scope('concat'):
                decode_shortcut = bn_relu(
                    conv(
                        decode_shortcut,
                        48,
                        1,
                        1,
                        groups=1,
                        padding=0,
                        param_attr=param_attr))

                decode_shortcut_shape = fluid.layers.shape(decode_shortcut)
                encode_data = fluid.layers.resize_bilinear(
                    encode_data, decode_shortcut_shape[2:])
                encode_data = fluid.layers.concat(
                    [encode_data, decode_shortcut], axis=1)
            if self.decoder_use_sep_conv:
                with scope("separable_conv1"):
                    encode_data = separate_conv(
                        encode_data, 256, 1, 3, dilation=1, act=relu)
                with scope("separable_conv2"):
                    encode_data = separate_conv(
                        encode_data, 256, 1, 3, dilation=1, act=relu)
            else:
                with scope("decoder_conv1"):
                    encode_data = bn_relu(
                        conv(
                            encode_data,
                            256,
                            stride=1,
                            filter_size=3,
                            dilation=1,
                            padding=1,
                            param_attr=param_attr))
                with scope("decoder_conv2"):
                    encode_data = bn_relu(
                        conv(
                            encode_data,
                            256,
                            stride=1,
                            filter_size=3,
                            dilation=1,
                            padding=1,
                            param_attr=param_attr))
            return encode_data

    def _get_loss(self, logit, label, mask):
        avg_loss = 0
        if not (self.use_dice_loss or self.use_bce_loss):
            avg_loss += softmax_with_loss(
                logit,
                label,
                mask,
                num_classes=self.num_classes,
                weight=self.class_weight,
                ignore_index=self.ignore_index)
        else:
            if self.use_dice_loss:
                avg_loss += dice_loss(logit, label, mask)
            if self.use_bce_loss:
                avg_loss += bce_loss(
                    logit, label, mask, ignore_index=self.ignore_index)

        return avg_loss

    def generate_inputs(self):
        inputs = OrderedDict()
C
Channingss 已提交
316 317 318 319 320 321 322 323

        if self.fixed_input_shape is not None:
            input_shape =[None, 3, self.fixed_input_shape[0], self.fixed_input_shape[1]]
            inputs['image'] = fluid.data(
                dtype='float32', shape=input_shape, name='image')
        else:
            inputs['image'] = fluid.data(
                dtype='float32', shape=[None, 3, None, None], name='image')
J
jiangjiajun 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        if self.mode == 'train':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        elif self.mode == 'eval':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        return inputs

    def build_net(self, inputs):
        # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
        if self.use_dice_loss or self.use_bce_loss:
            self.num_classes = 1
        image = inputs['image']

        data, decode_shortcuts = self.backbone(image)
        decode_shortcut = decode_shortcuts[self.backbone.decode_points]

        # 编码器解码器设置
        if self.encoder_with_aspp:
            data = self._encoder(data)
        if self.enable_decoder:
            data = self._decoder(data, decode_shortcut)

        # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸
        param_attr = fluid.ParamAttr(
            name=name_scope + 'weights',
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0),
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
        with scope('logit'):
            with fluid.name_scope('last_conv'):
                logit = conv(
                    data,
                    self.num_classes,
                    1,
                    stride=1,
                    padding=0,
                    bias_attr=True,
                    param_attr=param_attr)
            image_shape = fluid.layers.shape(image)
            logit = fluid.layers.resize_bilinear(logit, image_shape[2:])

        if self.num_classes == 1:
            out = sigmoid_to_softmax(logit)
            out = fluid.layers.transpose(out, [0, 2, 3, 1])
        else:
            out = fluid.layers.transpose(logit, [0, 2, 3, 1])

        pred = fluid.layers.argmax(out, axis=3)
        pred = fluid.layers.unsqueeze(pred, axes=[3])

        if self.mode == 'train':
            label = inputs['label']
            mask = label != self.ignore_index
            return self._get_loss(logit, label, mask)

        elif self.mode == 'eval':
            label = inputs['label']
            mask = label != self.ignore_index
            loss = self._get_loss(logit, label, mask)
            return loss, pred, label, mask
        else:
            if self.num_classes == 1:
                logit = sigmoid_to_softmax(logit)
            else:
                logit = fluid.layers.softmax(logit, axis=1)
            return pred, logit

        return logit