mobilenet_v1.py 8.1 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay


class MobileNetV1(object):
    """
    MobileNet v1, see https://arxiv.org/abs/1704.04861
    Args:
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
        norm_decay (float): weight decay for normalization layer weights
        conv_group_scale (int): scaling factor for convolution groups
        with_extra_blocks (bool): if extra blocks should be added
        extra_block_filters (list): number of filter for each extra block
    """

    def __init__(self,
                 norm_type='bn',
                 norm_decay=0.,
                 conv_group_scale=1,
                 conv_learning_rate=1.0,
                 with_extra_blocks=False,
                 extra_block_filters=[[256, 512], [128, 256], [128, 256],
                                      [64, 128]],
                 weight_prefix_name='',
                 num_classes=None):
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.conv_group_scale = conv_group_scale
        self.conv_learning_rate = conv_learning_rate
        self.with_extra_blocks = with_extra_blocks
        self.extra_block_filters = extra_block_filters
        self.prefix_name = weight_prefix_name
        self.num_classes = num_classes

    def _conv_norm(self,
                   input,
                   filter_size,
                   num_filters,
                   stride,
                   padding,
                   num_groups=1,
                   act='relu',
                   use_cudnn=True,
                   name=None):
        parameter_attr = ParamAttr(
            learning_rate=self.conv_learning_rate,
            initializer=fluid.initializer.MSRA(),
            name=name + "_weights")
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=parameter_attr,
            bias_attr=False)

        bn_name = name + "_bn"
        norm_decay = self.norm_decay
F
FlyingQianMM 已提交
82 83 84 85
        if self.num_classes:
            regularizer = None
        else:
            regularizer = L2Decay(norm_decay)
J
jiangjiajun 已提交
86
        bn_param_attr = ParamAttr(
F
FlyingQianMM 已提交
87
            regularizer=regularizer, name=bn_name + '_scale')
J
jiangjiajun 已提交
88
        bn_bias_attr = ParamAttr(
F
FlyingQianMM 已提交
89
            regularizer=regularizer, name=bn_name + '_offset')
J
jiangjiajun 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def depthwise_separable(self,
                            input,
                            num_filters1,
                            num_filters2,
                            num_groups,
                            stride,
                            scale,
                            name=None):
        depthwise_conv = self._conv_norm(
            input=input,
            filter_size=3,
            num_filters=int(num_filters1 * scale),
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False,
            name=name + "_dw")

        pointwise_conv = self._conv_norm(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0,
            name=name + "_sep")
        return pointwise_conv

    def _extra_block(self,
                     input,
                     num_filters1,
                     num_filters2,
                     num_groups,
                     stride,
                     name=None):
        pointwise_conv = self._conv_norm(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1),
            stride=1,
            num_groups=int(num_groups),
            padding=0,
            name=name + "_extra1")
        normal_conv = self._conv_norm(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2),
            stride=2,
            num_groups=int(num_groups),
            padding=1,
            name=name + "_extra2")
        return normal_conv

    def __call__(self, input):
        scale = self.conv_group_scale

        blocks = []
        # input 1/1
        out = self._conv_norm(
            input, 3, int(32 * scale), 2, 1, name=self.prefix_name + "conv1")
        # 1/2
        out = self.depthwise_separable(
            out, 32, 64, 32, 1, scale, name=self.prefix_name + "conv2_1")
        out = self.depthwise_separable(
            out, 64, 128, 64, 2, scale, name=self.prefix_name + "conv2_2")
        # 1/4
        out = self.depthwise_separable(
            out, 128, 128, 128, 1, scale, name=self.prefix_name + "conv3_1")
        out = self.depthwise_separable(
            out, 128, 256, 128, 2, scale, name=self.prefix_name + "conv3_2")
        # 1/8
        blocks.append(out)
        out = self.depthwise_separable(
            out, 256, 256, 256, 1, scale, name=self.prefix_name + "conv4_1")
        out = self.depthwise_separable(
            out, 256, 512, 256, 2, scale, name=self.prefix_name + "conv4_2")
        # 1/16
        blocks.append(out)
        for i in range(5):
            out = self.depthwise_separable(
                out,
                512,
                512,
                512,
                1,
                scale,
                name=self.prefix_name + "conv5_" + str(i + 1))
        module11 = out

        out = self.depthwise_separable(
            out, 512, 1024, 512, 2, scale, name=self.prefix_name + "conv5_6")
        # 1/32
        out = self.depthwise_separable(
            out, 1024, 1024, 1024, 1, scale, name=self.prefix_name + "conv6")
        module13 = out
        blocks.append(out)
        if self.num_classes:
            out = fluid.layers.pool2d(
                input=out, pool_type='avg', global_pooling=True)
F
FlyingQianMM 已提交
196 197 198 199 200 201
            output = fluid.layers.fc(input=out,
                                     size=self.num_classes,
                                     param_attr=ParamAttr(
                                         initializer=fluid.initializer.MSRA(),
                                         name="fc7_weights"),
                                     bias_attr=ParamAttr(name="fc7_offset"))
S
sunyanfang01 已提交
202
            return output
J
jiangjiajun 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        if not self.with_extra_blocks:
            return blocks

        num_filters = self.extra_block_filters
        module14 = self._extra_block(module13, num_filters[0][0],
                                     num_filters[0][1], 1, 2,
                                     self.prefix_name + "conv7_1")
        module15 = self._extra_block(module14, num_filters[1][0],
                                     num_filters[1][1], 1, 2,
                                     self.prefix_name + "conv7_2")
        module16 = self._extra_block(module15, num_filters[2][0],
                                     num_filters[2][1], 1, 2,
                                     self.prefix_name + "conv7_3")
        module17 = self._extra_block(module16, num_filters[3][0],
                                     num_filters[3][1], 1, 2,
                                     self.prefix_name + "conv7_4")
F
FlyingQianMM 已提交
220
        return module11, module13, module14, module15, module16, module17