semantic_segmentation.md 14.1 KB
Newer Older
J
jiangjiajun 已提交
1
# Semantic Segmentation
J
jiangjiajun 已提交
2

J
jiangjiajun 已提交
3
## paddlex.seg.DeepLabv3p
J
jiangjiajun 已提交
4 5

```python
6
paddlex.seg.DeepLabv3p(num_classes=2, backbone='MobileNetV2_x1.0', output_stride=16, aspp_with_sep_conv=True, decoder_use_sep_conv=True, encoder_with_aspp=True, enable_decoder=True, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, pooling_crop_size=None, input_channel=3)
J
jiangjiajun 已提交
7 8 9 10 11 12 13
```

> 构建DeepLabv3p分割器。

> **参数**

> > - **num_classes** (int): 类别数。
14
> > - **backbone** (str): DeepLabv3+的backbone网络,实现特征图的计算,取值范围为['Xception65', 'Xception41', 'MobileNetV2_x0.25', 'MobileNetV2_x0.5', 'MobileNetV2_x1.0', 'MobileNetV2_x1.5', 'MobileNetV2_x2.0', 'MobileNetV3_large_x1_0_ssld'],默认值为'MobileNetV2_x1.0'。
J
jiangjiajun 已提交
15 16 17 18 19 20 21 22 23
> > - **output_stride** (int): backbone 输出特征图相对于输入的下采样倍数,一般取值为8或16。默认16。
> > - **aspp_with_sep_conv** (bool):  decoder模块是否采用separable convolutions。默认True。
> > - **decoder_use_sep_conv** (bool): decoder模块是否采用separable convolutions。默认True。
> > - **encoder_with_aspp** (bool): 是否在encoder阶段采用aspp模块。默认True。
> > - **enable_decoder** (bool): 是否使用decoder模块。默认True。
> > - **use_bce_loss** (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
> > - **use_dice_loss** (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用,当`use_bce_loss`和`use_dice_loss`都为False时,使用交叉熵损失函数。默认False。
> > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
> > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
24
> > - **pooling_crop_size** (int):当backbone为`MobileNetV3_large_x1_0_ssld`时,需设置为训练过程中模型输入大小,格式为[W, H]。例如模型输入大小为[512, 512], 则`pooling_crop_size`应该设置为[512, 512]。在encoder模块中获取图像平均值时被用到,若为None,则直接求平均值;若为模型输入大小,则使用`avg_pool`算子得到平均值。默认值None。
25
> > - **input_channel** (int): 输入图像通道数。默认值3。
J
jiangjiajun 已提交
26

J
jiangjiajun 已提交
27
### train
J
jiangjiajun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

```python
train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None):
```

> DeepLabv3p模型的训练接口,函数内置了`polynomial`学习率衰减策略和`momentum`优化器。

> **参数**
> >
> > - **num_epochs** (int): 训练迭代轮数。
> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
> > - **train_batch_size** (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
F
FlyingQianMM 已提交
44
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的COCO预训练模型);若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的CITYSCAPES预训练模型);若为None,则不使用预训练模型。默认'IMAGENET'。
J
jiangjiajun 已提交
45 46 47 48
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
F
FlyingQianMM 已提交
49
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
J
jiangjiajun 已提交
50
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
F
FlyingQianMM 已提交
51
> > - **early_stop** (bool): 是否使用提前终止训练策略。默认值为False。
J
jiangjiajun 已提交
52 53 54
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。

J
jiangjiajun 已提交
55
### evaluate
J
jiangjiajun 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

```python
evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
```

> DeepLabv3p模型评估接口。

>  **参数**
> >
> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
> > - **batch_size** (int): 评估时的batch大小。默认1。
> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
> > - **return_details** (bool): 是否返回详细信息。默认False。

> **返回值**
> >
> > - **dict**: 当`return_details`为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
M
update  
mamingjie-China 已提交
73
> >   'category_acc'和'kappa',分别表示平均IoU、各类别IoU、平均准确率、各类别准确率和kappa系数。
J
jiangjiajun 已提交
74 75 76
> > - **tuple** (metrics, eval_details):当`return_details`为True时,增加返回dict (eval_details),
> >   包含关键字:'confusion_matrix',表示评估的混淆矩阵。

J
jiangjiajun 已提交
77
### predict
J
jiangjiajun 已提交
78 79

```
80
predict(self, img_file, transforms=None):
J
jiangjiajun 已提交
81 82 83 84 85 86
```

> DeepLabv3p模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`DeepLabv3p.test_transforms`和`DeepLabv3p.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。

> **参数**
> >
J
jiangjiajun 已提交
87
> > - **img_file** (str|np.ndarray): 预测图像路径或numpy数组(HWC排列,BGR格式)。
J
jiangjiajun 已提交
88
> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
F
FlyingQianMM 已提交
89

J
jiangjiajun 已提交
90 91 92 93
> **返回值**
> >
> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。

94 95 96 97

### batch_predict

```
F
FlyingQianMM 已提交
98
batch_predict(self, img_file_list, transforms=None, thread_num=2):
99 100
```

F
FlyingQianMM 已提交
101
> DeepLabv3p模型批量预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`DeepLabv3p.test_transforms`和`DeepLabv3p.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`batch_predict`接口时,用户需要再重新定义test_transforms传入给`batch_predict`接口。
102 103 104 105 106

> **参数**
> >
> > - **img_file_list** (list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是预测图像路径或numpy数组(HWC排列,BGR格式)。
> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
F
FlyingQianMM 已提交
107
> > - **thread_num** (int): 并发执行各图像预处理时的线程数。
108 109 110 111 112 113 114

> **返回值**
> >
> > - **dict**: 每个元素都为列表,表示各图像的预测结果。各图像的预测结果用字典表示,包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。



J
jiangjiajun 已提交
115
## paddlex.seg.UNet
J
jiangjiajun 已提交
116 117

```python
118
paddlex.seg.UNet(num_classes=2, upsample_mode='bilinear', use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, input_channel=3)
J
jiangjiajun 已提交
119 120 121 122 123 124 125 126 127 128 129 130
```

> 构建UNet分割器。

> **参数**

> > - **num_classes** (int): 类别数。
> > - **upsample_mode** (str): UNet decode时采用的上采样方式,取值为'bilinear'时利用双线行差值进行上菜样,当输入其他选项时则利用反卷积进行上菜样,默认为'bilinear'。
> > - **use_bce_loss** (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
> > - **use_dice_loss** (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
> > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
> > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
131
> > - **input_channel** (int): 输入图像通道数。默认值3。
J
jiangjiajun 已提交
132

J
jiangjiajun 已提交
133 134 135
> - train 训练接口说明同 [DeepLabv3p模型train接口](#train)
> - evaluate 评估接口说明同 [DeepLabv3p模型evaluate接口](#evaluate)
> - predict 预测接口说明同 [DeepLabv3p模型predict接口](#predict)
136
> - batch_predict 批量预测接口说明同 [DeepLabv3p模型predict接口](#batch-predict)
J
jiangjiajun 已提交
137

J
jiangjiajun 已提交
138
## paddlex.seg.HRNet
F
FlyingQianMM 已提交
139 140

```python
141
paddlex.seg.HRNet(num_classes=2, width=18, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, input_channel=3)
F
FlyingQianMM 已提交
142 143 144 145 146 147 148
```

> 构建HRNet分割器。

> **参数**

> > - **num_classes** (int): 类别数。
149
> > - **width** (int|str): 高分辨率分支中特征层的通道数量。默认值为18。可选择取值为[18, 30, 32, 40, 44, 48, 60, 64, '18_small_v1']。'18_small_v1'是18的轻量级版本。
F
FlyingQianMM 已提交
150 151
> > - **use_bce_loss** (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
> > - **use_dice_loss** (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
152
> > - **class_weight** (list|str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
F
FlyingQianMM 已提交
153
> > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
154
> > - **input_channel** (int): 输入图像通道数。默认值3。
F
FlyingQianMM 已提交
155

J
jiangjiajun 已提交
156 157 158
> - train 训练接口说明同 [DeepLabv3p模型train接口](#train)
> - evaluate 评估接口说明同 [DeepLabv3p模型evaluate接口](#evaluate)
> - predict 预测接口说明同 [DeepLabv3p模型predict接口](#predict)
159
> - batch_predict 批量预测接口说明同 [DeepLabv3p模型predict接口](#batch-predict)
F
FlyingQianMM 已提交
160

J
jiangjiajun 已提交
161
## paddlex.seg.FastSCNN
F
FlyingQianMM 已提交
162 163

```python
164
paddlex.seg.FastSCNN(num_classes=2, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255, multi_loss_weight=[1.0], input_channel=3)
F
FlyingQianMM 已提交
165 166 167 168 169 170 171 172 173 174 175 176
```

> 构建FastSCNN分割器。

> **参数**

> > - **num_classes** (int): 类别数。
> > - **use_bce_loss** (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
> > - **use_dice_loss** (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
> > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
> > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
> > - **multi_loss_weight** (list): 多分支上的loss权重。默认计算一个分支上的loss,即默认值为[1.0]。也支持计算两个分支或三个分支上的loss,权重按[fusion_branch_weight, higher_branch_weight, lower_branch_weight]排列,fusion_branch_weight为空间细节分支和全局上下文分支融合后的分支上的loss权重,higher_branch_weight为空间细节分支上的loss权重,lower_branch_weight为全局上下文分支上的loss权重,若higher_branch_weight和lower_branch_weight未设置则不会计算这两个分支上的loss。
177
> > - **input_channel** (int): 输入图像通道数。默认值3。
F
FlyingQianMM 已提交
178

J
jiangjiajun 已提交
179 180 181
> - train 训练接口说明同 [DeepLabv3p模型train接口](#train)
> - evaluate 评估接口说明同 [DeepLabv3p模型evaluate接口](#evaluate)
> - predict 预测接口说明同 [DeepLabv3p模型predict接口](#predict)
182
> - batch_predict 批量预测接口说明同 [DeepLabv3p模型predict接口](#batch-predict)