transforms.cpp 8.3 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

S
syyxsxx 已提交
15 16 17 18
#include "include/paddlex/transforms.h"

#include <math.h>

C
Channingss 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <iostream>
#include <string>
#include <vector>


namespace PaddleX {

std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
                                             {"NEAREST", cv::INTER_NEAREST},
                                             {"AREA", cv::INTER_AREA},
                                             {"CUBIC", cv::INTER_CUBIC},
                                             {"LANCZOS4", cv::INTER_LANCZOS4}};

bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
33 34 35 36 37 38 39 40
  for (int c = 0; c < im->channels(); c++) {
    float range_val = max_val_[c] - min_val_[c];
    for (int h = 0; h < im->rows; h++) {
      for (int w = 0; w < im->cols; w++) {
        im->at<cv::Vec3f>(h, w)[c] =
            ((im->at<cv::Vec3f>(h, w)[c] - min_val_[c]) / range_val -
            mean_[c]) / std_[c];
      }
C
Channingss 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    }
  }
  return true;
}

float ResizeByShort::GenerateScale(const cv::Mat& im) {
  int origin_w = im.cols;
  int origin_h = im.rows;
  int im_size_max = std::max(origin_w, origin_h);
  int im_size_min = std::min(origin_w, origin_h);
  float scale =
      static_cast<float>(short_size_) / static_cast<float>(im_size_min);
  if (max_size_ > 0) {
    if (round(scale * im_size_max) > max_size_) {
      scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
    }
  }
  return scale;
}

bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
C
Channingss 已提交
62
  data->im_size_before_resize_.push_back({im->rows, im->cols});
C
Channingss 已提交
63 64 65
  data->reshape_order_.push_back("resize");

  float scale = GenerateScale(*im);
66 67
  int width = static_cast<int>(round(scale * im->cols));
  int height = static_cast<int>(round(scale * im->rows));
C
Channingss 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);

  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  data->scale = scale;
  return true;
}

bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
  int height = static_cast<int>(im->rows);
  int width = static_cast<int>(im->cols);
  if (height < height_ || width < width_) {
    std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
    return false;
  }
  int offset_x = static_cast<int>((width - width_) / 2);
  int offset_y = static_cast<int>((height - height_) / 2);
  cv::Rect crop_roi(offset_x, offset_y, width_, height_);
  *im = (*im)(crop_roi);
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  return true;
}

bool Padding::Run(cv::Mat* im, ImageBlob* data) {
C
Channingss 已提交
93
  data->im_size_before_resize_.push_back({im->rows, im->cols});
C
Channingss 已提交
94 95 96 97
  data->reshape_order_.push_back("padding");

  int padding_w = 0;
  int padding_h = 0;
98
  if (width_ > 1 & height_ > 1) {
C
Channingss 已提交
99 100
    padding_w = width_ - im->cols;
    padding_h = height_ - im->rows;
J
jack 已提交
101
  } else if (coarsest_stride_ >= 1) {
J
jack 已提交
102 103
    int h = im->rows;
    int w = im->cols;
C
Channingss 已提交
104
    padding_h =
J
jack 已提交
105
        ceil(h * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
C
Channingss 已提交
106
    padding_w =
J
jack 已提交
107
        ceil(w * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
C
Channingss 已提交
108
  }
109

C
Channingss 已提交
110 111 112 113 114 115
  if (padding_h < 0 || padding_w < 0) {
    std::cerr << "[Padding] Computed padding_h=" << padding_h
              << ", padding_w=" << padding_w
              << ", but they should be greater than 0." << std::endl;
    return false;
  }
116 117 118 119 120 121 122 123 124 125
  std::vector<cv::Mat> padded_im_per_channel;
  for (size_t i = 0; i < im->channels(); i++) {
    const cv::Mat per_channel = cv::Mat(im->size(), CV_32FC1, im_value_[i]);
    padded_im_per_channel.push_back(per_channel);
  }
  cv::Mat padded_im;
  cv::merge(padded_im_per_channel, padded_im);
  cv::Rect im_roi = cv::Rect(0, 0, im->cols, im->rows);
  im->copyTo(padded_im(im_roi));
  *im = padded_im;
C
Channingss 已提交
126 127 128 129 130 131 132 133 134 135 136
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  return true;
}

bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
  if (long_size_ <= 0) {
    std::cerr << "[ResizeByLong] long_size should be greater than 0"
              << std::endl;
    return false;
  }
C
Channingss 已提交
137
  data->im_size_before_resize_.push_back({im->rows, im->cols});
C
Channingss 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  data->reshape_order_.push_back("resize");
  int origin_w = im->cols;
  int origin_h = im->rows;

  int im_size_max = std::max(origin_w, origin_h);
  float scale =
      static_cast<float>(long_size_) / static_cast<float>(im_size_max);
  cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  data->scale = scale;
  return true;
}

bool Resize::Run(cv::Mat* im, ImageBlob* data) {
  if (width_ <= 0 || height_ <= 0) {
    std::cerr << "[Resize] width and height should be greater than 0"
              << std::endl;
    return false;
  }
  if (interpolations.count(interp_) <= 0) {
    std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
              << std::endl;
    return false;
  }
C
Channingss 已提交
163
  data->im_size_before_resize_.push_back({im->rows, im->cols});
C
Channingss 已提交
164 165 166 167 168 169 170 171 172
  data->reshape_order_.push_back("resize");

  cv::resize(
      *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  return true;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
bool Clip::Run(cv::Mat* im, ImageBlob* data) {
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      for (int c = 0; c < im->channels(); c++) {
        if (im->at<cv::Vec3f>(h, w)[c] < min_val_[c]) {
          im->at<cv::Vec3f>(h, w)[c] = min_val_[c];
        }
        if (im->at<cv::Vec3f>(h, w)[c] > max_val_[c]) {
          im->at<cv::Vec3f>(h, w)[c] = max_val_[c];
        }
      }
    }
  }
  return true;
}

C
Channingss 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
  transforms_.clear();
  to_rgb_ = to_rgb;
  for (const auto& item : transforms_node) {
    std::string name = item.begin()->first.as<std::string>();
    std::cout << "trans name: " << name << std::endl;
    std::shared_ptr<Transform> transform = CreateTransform(name);
    transform->Init(item.begin()->second);
    transforms_.push_back(transform);
  }
}

std::shared_ptr<Transform> Transforms::CreateTransform(
    const std::string& transform_name) {
  if (transform_name == "Normalize") {
    return std::make_shared<Normalize>();
  } else if (transform_name == "ResizeByShort") {
    return std::make_shared<ResizeByShort>();
  } else if (transform_name == "CenterCrop") {
    return std::make_shared<CenterCrop>();
  } else if (transform_name == "Resize") {
    return std::make_shared<Resize>();
  } else if (transform_name == "Padding") {
    return std::make_shared<Padding>();
  } else if (transform_name == "ResizeByLong") {
    return std::make_shared<ResizeByLong>();
  } else {
    std::cerr << "There's unexpected transform(name='" << transform_name
              << "')." << std::endl;
    exit(-1);
  }
}

bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
S
syyxsxx 已提交
223
  // do all preprocess ops by order
C
Channingss 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  if (to_rgb_) {
    cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
  }
  (*im).convertTo(*im, CV_32FC3);
  data->ori_im_size_[0] = im->rows;
  data->ori_im_size_[1] = im->cols;
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  for (int i = 0; i < transforms_.size(); ++i) {
    if (!transforms_[i]->Run(im, data)) {
      std::cerr << "Apply transforms to image failed!" << std::endl;
      return false;
    }
  }

S
syyxsxx 已提交
239 240
  // data format NHWC to NCHW
  // img data save to ImageBlob
C
Channingss 已提交
241 242 243 244 245 246 247 248 249 250
  int h = im->rows;
  int w = im->cols;
  int c = im->channels();
  (data->im_data_).resize(c * h * w);
  float* ptr = (data->im_data_).data();
  for (int i = 0; i < c; ++i) {
    cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
  }
  return true;
}
J
jack 已提交
251

C
Channingss 已提交
252
}  // namespace PaddleX