paddlex.cpp 29.4 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
jack 已提交
14
#include <omp.h>
J
jack 已提交
15
#include <algorithm>
J
jack 已提交
16
#include <fstream>
J
jack 已提交
17
#include <cstring>
J
jack 已提交
18
#include "include/paddlex/paddlex.h"
C
Channingss 已提交
19 20 21 22
namespace PaddleX {

void Model::create_predictor(const std::string& model_dir,
                             bool use_gpu,
C
Channingss 已提交
23
                             bool use_trt,
C
Channingss 已提交
24
                             int gpu_id,
J
jack 已提交
25 26
                             std::string key,
                             bool use_ir_optim) {
C
Channingss 已提交
27 28 29
  paddle::AnalysisConfig config;
  std::string model_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
J
jack 已提交
30
  std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
J
jack 已提交
31
  std::string yaml_input = "";
C
Channingss 已提交
32
#ifdef WITH_ENCRYPTION
J
jack 已提交
33
  if (key != "") {
F
FlyingQianMM 已提交
34 35
    model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
    params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
J
jack 已提交
36
    yaml_file = model_dir + OS_PATH_SEP + "model.yml.encrypted";
J
jack 已提交
37 38
    paddle_security_load_model(
        &config, key.c_str(), model_file.c_str(), params_file.c_str());
J
jack 已提交
39
    yaml_input = decrypt_file(yaml_file.c_str(), key.c_str());
C
Channingss 已提交
40 41
  }
#endif
J
jack 已提交
42 43 44 45 46 47 48 49 50 51 52
  if (yaml_input == "") {
    // 读取配置文件
    std::ifstream yaml_fin(yaml_file);
    yaml_fin.seekg(0, std::ios::end);
    size_t yaml_file_size = yaml_fin.tellg();
    yaml_input.assign(yaml_file_size, ' ');
    yaml_fin.seekg(0);
    yaml_fin.read(&yaml_input[0], yaml_file_size);
  }
  // 读取配置文件内容
  if (!load_config(yaml_input)) {
J
jack 已提交
53 54 55 56
    std::cerr << "Parse file 'model.yml' failed!" << std::endl;
    exit(-1);
  }

J
jack 已提交
57
  if (key == "") {
C
Channingss 已提交
58 59
    config.SetModel(model_file, params_file);
  }
C
Channingss 已提交
60 61 62 63 64 65 66
  if (use_gpu) {
    config.EnableUseGpu(100, gpu_id);
  } else {
    config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
J
jack 已提交
67 68
  // 开启图优化
  config.SwitchIrOptim(use_ir_optim);
C
Channingss 已提交
69 70
  // 开启内存优化
  config.EnableMemoryOptim();
C
Channingss 已提交
71 72 73 74 75 76 77 78
  if (use_trt) {
    config.EnableTensorRtEngine(
        1 << 20 /* workspace_size*/,
        32 /* max_batch_size*/,
        20 /* min_subgraph_size*/,
        paddle::AnalysisConfig::Precision::kFloat32 /* precision*/,
        true /* use_static*/,
        false /* use_calib_mode*/);
C
Channingss 已提交
79
  }
C
Channingss 已提交
80 81 82
  predictor_ = std::move(CreatePaddlePredictor(config));
}

J
jack 已提交
83 84
bool Model::load_config(const std::string& yaml_input) {
  YAML::Node config = YAML::Load(yaml_input);
C
Channingss 已提交
85 86
  type = config["_Attributes"]["model_type"].as<std::string>();
  name = config["Model"].as<std::string>();
F
FlyingQianMM 已提交
87 88
  std::string version = config["version"].as<std::string>();
  if (version[0] == '0') {
J
jack 已提交
89 90 91 92 93
    std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, "
              << "deployment cannot be done, please refer to "
              << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs"
              << "/tutorials/deploy/upgrade_version.md "
              << "to transfer version." << std::endl;
F
FlyingQianMM 已提交
94 95
    return false;
  }
C
Channingss 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  bool to_rgb = true;
  if (config["TransformsMode"].IsDefined()) {
    std::string mode = config["TransformsMode"].as<std::string>();
    if (mode == "BGR") {
      to_rgb = false;
    } else if (mode != "RGB") {
      std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
                << std::endl;
      return false;
    }
  }
  // 构建数据处理流
  transforms_.Init(config["Transforms"], to_rgb);
  // 读入label list
  labels.clear();
  for (const auto& item : config["_Attributes"]["labels"]) {
    int index = labels.size();
    labels[index] = item.as<std::string>();
  }
  return true;
}

bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
  cv::Mat im = input_im.clone();
120
  if (!transforms_.Run(&im, blob)) {
C
Channingss 已提交
121 122 123 124 125
    return false;
  }
  return true;
}

J
jack 已提交
126
// use openmp
J
jack 已提交
127 128 129
bool Model::preprocess(const std::vector<cv::Mat>& input_im_batch,
                       std::vector<ImageBlob>* blob_batch,
                       int thread_num) {
J
jack 已提交
130
  int batch_size = input_im_batch.size();
J
jack 已提交
131
  bool success = true;
J
jack 已提交
132 133
  thread_num = std::min(thread_num, batch_size);
  #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
134
  for (int i = 0; i < input_im_batch.size(); ++i) {
J
jack 已提交
135
    cv::Mat im = input_im_batch[i].clone();
J
jack 已提交
136
    if (!transforms_.Run(&im, &(*blob_batch)[i])) {
J
jack 已提交
137 138 139 140 141 142
      success = false;
    }
  }
  return success;
}

C
Channingss 已提交
143 144 145 146 147
bool Model::predict(const cv::Mat& im, ClsResult* result) {
  inputs_.clear();
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
J
jack 已提交
148
                 "to function predict()!" << std::endl;
C
Channingss 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    return false;
  }
  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  in_tensor->Reshape({1, 3, h, w});
  in_tensor->copy_from_cpu(inputs_.im_data_.data());
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
  result->category_id = std::distance(std::begin(outputs_), ptr);
  result->score = *ptr;
  result->category = labels[result->category_id];
J
jack 已提交
178
  return true;
C
Channingss 已提交
179 180
}

J
jack 已提交
181 182 183 184
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<ClsResult>* results,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
185 186 187 188
    inputs.clear();
  }
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
189
                 "function predict()!" << std::endl;
J
jack 已提交
190 191 192
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
193
                 "to function predict()!" << std::endl;
J
jack 已提交
194 195
    return false;
  }
J
jack 已提交
196
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
197
  // 处理输入图像
J
jack 已提交
198
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
199 200 201 202 203 204 205 206 207 208
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  int batch_size = im_batch.size();
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  in_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
209 210 211 212
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
213 214
  }
  in_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
215
  // in_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  int single_batch_size = size / batch_size;
J
jack 已提交
229
  for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
230 231 232 233 234
    auto start_ptr = std::begin(outputs_);
    auto end_ptr = std::begin(outputs_);
    std::advance(start_ptr, i * single_batch_size);
    std::advance(end_ptr, (i + 1) * single_batch_size);
    auto ptr = std::max_element(start_ptr, end_ptr);
J
jack 已提交
235 236 237
    (*results)[i].category_id = std::distance(start_ptr, ptr);
    (*results)[i].score = *ptr;
    (*results)[i].category = labels[(*results)[i].category_id];
J
jack 已提交
238 239 240 241
  }
  return true;
}

C
Channingss 已提交
242
bool Model::predict(const cv::Mat& im, DetResult* result) {
J
jack 已提交
243
  inputs_.clear();
C
Channingss 已提交
244 245 246
  result->clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
247
                 "to function predict()!" << std::endl;
C
Channingss 已提交
248 249 250
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
251
                 "to function predict()!" << std::endl;
C
Channingss 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
266

C
Channingss 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({1, 2});
    im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({1, 3});
    im_shape_tensor->Reshape({1, 3});
    float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
    float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
    float new_h = static_cast<float>(inputs_.new_im_size_[0]);
    float new_w = static_cast<float>(inputs_.new_im_size_[1]);
    float im_info[] = {new_h, new_w, inputs_.scale};
    float im_shape[] = {ori_h, ori_w, 1.0};
    im_info_tensor->copy_from_cpu(im_info);
    im_shape_tensor->copy_from_cpu(im_shape);
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < num_boxes; ++i) {
    Box box;
    box.category_id = static_cast<int>(round(output_box[i * 6]));
    box.category = labels[box.category_id];
    box.score = output_box[i * 6 + 1];
    float xmin = output_box[i * 6 + 2];
    float ymin = output_box[i * 6 + 3];
    float xmax = output_box[i * 6 + 4];
    float ymax = output_box[i * 6 + 5];
    float w = xmax - xmin + 1;
    float h = ymax - ymin + 1;
    box.coordinate = {xmin, ymin, w, h};
    result->boxes.push_back(std::move(box));
  }
  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    result->mask_resolution = output_mask_shape[2];
    for (int i = 0; i < result->boxes.size(); ++i) {
      Box* box = &result->boxes[i];
      auto begin_mask =
          output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
      auto end_mask = begin_mask + mask_pixels;
      box->mask.data.assign(begin_mask, end_mask);
      box->mask.shape = {static_cast<int>(box->coordinate[2]),
                         static_cast<int>(box->coordinate[3])};
    }
  }
J
jack 已提交
342
  return true;
C
Channingss 已提交
343 344
}

J
jack 已提交
345 346 347 348
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<DetResult>* result,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
349 350
    inputs.clear();
  }
J
jack 已提交
351 352
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
353
                 "to function predict()!" << std::endl;
J
jack 已提交
354 355 356
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
357
                 "to function predict()!" << std::endl;
J
jack 已提交
358 359 360
    return false;
  }

J
jack 已提交
361
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
362
  int batch_size = im_batch.size();
J
jack 已提交
363
  // 处理输入图像
J
jack 已提交
364
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
365 366 367
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
J
jack 已提交
368 369 370 371 372
  // 对RCNN类模型做批量padding
  if (batch_size > 1) {
    if (name == "FasterRCNN" || name == "MaskRCNN") {
      int max_h = -1;
      int max_w = -1;
J
jack 已提交
373
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
374 375
        max_h = std::max(max_h, inputs_batch_[i].new_im_size_[0]);
        max_w = std::max(max_w, inputs_batch_[i].new_im_size_[1]);
J
jack 已提交
376 377
        // std::cout << "(" << inputs_batch_[i].new_im_size_[0]
        //          << ", " << inputs_batch_[i].new_im_size_[1]
J
jack 已提交
378
        //          <<  ")" << std::endl;
J
jack 已提交
379
      }
J
jack 已提交
380 381
      thread_num = std::min(thread_num, batch_size);
      #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
382
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
383 384 385
        int h = inputs_batch_[i].new_im_size_[0];
        int w = inputs_batch_[i].new_im_size_[1];
        int c = im_batch[i].channels();
J
jack 已提交
386
        if (max_h != h || max_w != w) {
J
jack 已提交
387
          std::vector<float> temp_buffer(c * max_h * max_w);
J
jack 已提交
388 389 390
          float* temp_ptr = temp_buffer.data();
          float* ptr = inputs_batch_[i].im_data_.data();
          for (int cur_channel = c - 1; cur_channel >= 0; --cur_channel) {
J
jack 已提交
391 392
            int ori_pos = cur_channel * h * w + (h - 1) * w;
            int des_pos = cur_channel * max_h * max_w + (h - 1) * max_w;
J
jack 已提交
393 394 395
            int last_pos = cur_channel * h * w;
            for (; ori_pos >= last_pos; ori_pos -= w, des_pos -= max_w) {
              memcpy(temp_ptr + des_pos, ptr + ori_pos, w * sizeof(float));
J
jack 已提交
396 397 398 399
            }
          }
          inputs_batch_[i].im_data_.swap(temp_buffer);
          inputs_batch_[i].new_im_size_[0] = max_h;
J
jack 已提交
400
          inputs_batch_[i].new_im_size_[1] = max_w;
J
jack 已提交
401 402 403 404
        }
      }
    }
  }
J
jack 已提交
405 406 407 408 409
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
410 411 412 413
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
414 415 416 417 418
  }
  im_tensor->copy_from_cpu(inputs_data.data());
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({batch_size, 2});
J
jack 已提交
419 420 421 422 423
    std::vector<int> inputs_data_size(batch_size * 2);
    for (int i = 0; i < batch_size; ++i) {
      std::copy(inputs_batch_[i].ori_im_size_.begin(),
                inputs_batch_[i].ori_im_size_.end(),
                inputs_data_size.begin() + 2 * i);
J
jack 已提交
424 425 426 427 428 429 430
    }
    im_size_tensor->copy_from_cpu(inputs_data_size.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({batch_size, 3});
    im_shape_tensor->Reshape({batch_size, 3});
J
jack 已提交
431

J
jack 已提交
432 433
    std::vector<float> im_info(3 * batch_size);
    std::vector<float> im_shape(3 * batch_size);
J
jack 已提交
434
    for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
      float ori_h = static_cast<float>(inputs_batch_[i].ori_im_size_[0]);
      float ori_w = static_cast<float>(inputs_batch_[i].ori_im_size_[1]);
      float new_h = static_cast<float>(inputs_batch_[i].new_im_size_[0]);
      float new_w = static_cast<float>(inputs_batch_[i].new_im_size_[1]);
      im_info[i * 3] = new_h;
      im_info[i * 3 + 1] = new_w;
      im_info[i * 3 + 2] = inputs_batch_[i].scale;
      im_shape[i * 3] = ori_h;
      im_shape[i * 3 + 1] = ori_w;
      im_shape[i * 3 + 2] = 1.0;
    }
    im_info_tensor->copy_from_cpu(im_info.data());
    im_shape_tensor->copy_from_cpu(im_shape.data());
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 读取所有box
  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  auto lod_vector = output_box_tensor->lod();
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
J
jack 已提交
471
    for (int j = lod_vector[0][i]; j < lod_vector[0][i + 1]; ++j) {
J
jack 已提交
472
      Box box;
J
jack 已提交
473
      box.category_id = static_cast<int>(round(output_box[j * 6]));
J
jack 已提交
474 475 476 477 478 479 480 481 482
      box.category = labels[box.category_id];
      box.score = output_box[j * 6 + 1];
      float xmin = output_box[j * 6 + 2];
      float ymin = output_box[j * 6 + 3];
      float xmax = output_box[j * 6 + 4];
      float ymax = output_box[j * 6 + 5];
      float w = xmax - xmin + 1;
      float h = ymax - ymin + 1;
      box.coordinate = {xmin, ymin, w, h};
J
jack 已提交
483
      (*result)[i].boxes.push_back(std::move(box));
J
jack 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    }
  }

  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    int mask_idx = 0;
J
jack 已提交
501 502 503 504 505 506 507
    for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
      (*result)[i].mask_resolution = output_mask_shape[2];
      for (int j = 0; j < (*result)[i].boxes.size(); ++j) {
        Box* box = &(*result)[i].boxes[j];
        int category_id = box->category_id;
        auto begin_mask = output_mask.begin() +
                          (mask_idx * classes + category_id) * mask_pixels;
J
jack 已提交
508 509 510 511 512 513 514 515
        auto end_mask = begin_mask + mask_pixels;
        box->mask.data.assign(begin_mask, end_mask);
        box->mask.shape = {static_cast<int>(box->coordinate[2]),
                           static_cast<int>(box->coordinate[3])};
        mask_idx++;
      }
    }
  }
J
jack 已提交
516
  return true;
J
jack 已提交
517 518
}

C
Channingss 已提交
519 520 521 522 523
bool Model::predict(const cv::Mat& im, SegResult* result) {
  result->clear();
  inputs_.clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
524
                 "to function predict()!" << std::endl;
C
Channingss 已提交
525 526 527
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
528
                 "function predict()!" << std::endl;
C
Channingss 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
    result->label_map.shape.push_back(i);
  }
J
jack 已提交
556

C
Channingss 已提交
557 558 559 560 561 562 563 564 565 566 567
  result->label_map.data.resize(size);
  output_label_tensor->copy_to_cpu(result->label_map.data.data());

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
    result->score_map.shape.push_back(i);
  }
J
jack 已提交
568

C
Channingss 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
  result->score_map.data.resize(size);
  output_score_tensor->copy_to_cpu(result->score_map.data.data());

  // 解析输出结果到原图大小
  std::vector<uint8_t> label_map(result->label_map.data.begin(),
                                 result->label_map.data.end());
  cv::Mat mask_label(result->label_map.shape[1],
                     result->label_map.shape[2],
                     CV_8UC1,
                     label_map.data());

  cv::Mat mask_score(result->score_map.shape[2],
                     result->score_map.shape[3],
                     CV_32FC1,
                     result->score_map.data.data());
C
Channingss 已提交
584
  int idx = 1;
C
Channingss 已提交
585
  int len_postprocess = inputs_.im_size_before_resize_.size();
C
Channingss 已提交
586 587
  for (std::vector<std::string>::reverse_iterator iter =
           inputs_.reshape_order_.rbegin();
C
Channingss 已提交
588 589
       iter != inputs_.reshape_order_.rend();
       ++iter) {
C
Channingss 已提交
590
    if (*iter == "padding") {
C
Channingss 已提交
591
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
592 593 594
      inputs_.im_size_before_resize_.pop_back();
      auto padding_w = before_shape[0];
      auto padding_h = before_shape[1];
J
jack 已提交
595 596
      mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
      mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
C
Channingss 已提交
597
    } else if (*iter == "resize") {
C
Channingss 已提交
598
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
599 600 601
      inputs_.im_size_before_resize_.pop_back();
      auto resize_w = before_shape[0];
      auto resize_h = before_shape[1];
C
Channingss 已提交
602 603 604 605 606 607 608 609 610 611 612
      cv::resize(mask_label,
                 mask_label,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
                 cv::INTER_NEAREST);
      cv::resize(mask_score,
                 mask_score,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
J
jack 已提交
613
                 cv::INTER_LINEAR);
C
Channingss 已提交
614
    }
C
Channingss 已提交
615
    ++idx;
C
Channingss 已提交
616 617 618 619 620 621 622
  }
  result->label_map.data.assign(mask_label.begin<uint8_t>(),
                                mask_label.end<uint8_t>());
  result->label_map.shape = {mask_label.rows, mask_label.cols};
  result->score_map.data.assign(mask_score.begin<float>(),
                                mask_score.end<float>());
  result->score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
623 624 625
  return true;
}

J
jack 已提交
626 627 628 629
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<SegResult>* result,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
630 631 632 633
    inputs.clear();
  }
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
634
                 "to function predict()!" << std::endl;
J
jack 已提交
635 636 637
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
638
                 "function predict()!" << std::endl;
J
jack 已提交
639 640 641 642
    return false;
  }

  // 处理输入图像
J
jack 已提交
643
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
644
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
645 646 647 648 649
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int batch_size = im_batch.size();
J
jack 已提交
650 651
  (*result).clear();
  (*result).resize(batch_size);
J
jack 已提交
652 653 654 655 656
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
657 658 659 660
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
661 662
  }
  im_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
663
  // im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
  }

  std::vector<int64_t> output_labels(size, 0);
  output_label_tensor->copy_to_cpu(output_labels.data());
  auto output_labels_iter = output_labels.begin();

  int single_batch_size = size / batch_size;
J
jack 已提交
682 683 684 685 686
  for (int i = 0; i < batch_size; ++i) {
    (*result)[i].label_map.data.resize(single_batch_size);
    (*result)[i].label_map.shape.push_back(1);
    for (int j = 1; j < output_label_shape.size(); ++j) {
      (*result)[i].label_map.shape.push_back(output_label_shape[j]);
J
jack 已提交
687
    }
J
jack 已提交
688 689 690
    std::copy(output_labels_iter + i * single_batch_size,
              output_labels_iter + (i + 1) * single_batch_size,
              (*result)[i].label_map.data.data());
J
jack 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
  }

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
  }

  std::vector<float> output_scores(size, 0);
  output_score_tensor->copy_to_cpu(output_scores.data());
  auto output_scores_iter = output_scores.begin();

  int single_batch_score_size = size / batch_size;
J
jack 已提交
706 707 708 709 710
  for (int i = 0; i < batch_size; ++i) {
    (*result)[i].score_map.data.resize(single_batch_score_size);
    (*result)[i].score_map.shape.push_back(1);
    for (int j = 1; j < output_score_shape.size(); ++j) {
      (*result)[i].score_map.shape.push_back(output_score_shape[j]);
J
jack 已提交
711
    }
J
jack 已提交
712 713 714
    std::copy(output_scores_iter + i * single_batch_score_size,
              output_scores_iter + (i + 1) * single_batch_score_size,
              (*result)[i].score_map.data.data());
J
jack 已提交
715 716 717
  }

  // 解析输出结果到原图大小
J
jack 已提交
718 719 720 721 722
  for (int i = 0; i < batch_size; ++i) {
    std::vector<uint8_t> label_map((*result)[i].label_map.data.begin(),
                                   (*result)[i].label_map.data.end());
    cv::Mat mask_label((*result)[i].label_map.shape[1],
                       (*result)[i].label_map.shape[2],
J
jack 已提交
723 724
                       CV_8UC1,
                       label_map.data());
J
jack 已提交
725 726 727

    cv::Mat mask_score((*result)[i].score_map.shape[2],
                       (*result)[i].score_map.shape[3],
J
jack 已提交
728
                       CV_32FC1,
J
jack 已提交
729
                       (*result)[i].score_map.data.data());
J
jack 已提交
730 731 732 733 734 735 736
    int idx = 1;
    int len_postprocess = inputs_batch_[i].im_size_before_resize_.size();
    for (std::vector<std::string>::reverse_iterator iter =
             inputs_batch_[i].reshape_order_.rbegin();
         iter != inputs_batch_[i].reshape_order_.rend();
         ++iter) {
      if (*iter == "padding") {
J
jack 已提交
737 738
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
739 740 741 742 743 744
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto padding_w = before_shape[0];
        auto padding_h = before_shape[1];
        mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
        mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
      } else if (*iter == "resize") {
J
jack 已提交
745 746
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto resize_w = before_shape[0];
        auto resize_h = before_shape[1];
        cv::resize(mask_label,
                   mask_label,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
                   cv::INTER_NEAREST);
        cv::resize(mask_score,
                   mask_score,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
J
jack 已提交
761
                   cv::INTER_LINEAR);
J
jack 已提交
762 763 764
      }
      ++idx;
    }
J
jack 已提交
765 766 767 768 769 770
    (*result)[i].label_map.data.assign(mask_label.begin<uint8_t>(),
                                       mask_label.end<uint8_t>());
    (*result)[i].label_map.shape = {mask_label.rows, mask_label.cols};
    (*result)[i].score_map.data.assign(mask_score.begin<float>(),
                                       mask_score.end<float>());
    (*result)[i].score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
771 772
  }
  return true;
C
Channingss 已提交
773 774
}

J
jack 已提交
775
}  // namespace PaddleX