visualize.py 2.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os.path as osp
import tqdm
import numpy as np
from .prune import cal_model_size
from paddleslim.prune import load_sensitivities


def visualize(model, sensitivities_file, save_dir='./'):
    """将模型裁剪率和每个参数裁剪后精度损失的关系可视化。
       可视化结果纵轴为eval_metric_loss参数值,横轴为对应的模型被裁剪的比例

    Args:
        model (paddlex.cv.models): paddlex中的模型。
        sensitivities_file (str): 敏感度文件存储路径。
    """
J
jiangjiajun 已提交
30 31 32 33
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

J
jiangjiajun 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    program = model.test_prog
    place = model.places[0]
    fig = plt.figure()
    plt.xlabel("model prune ratio")
    plt.ylabel("evaluation loss")
    title_name = osp.split(sensitivities_file)[-1].split('.')[0]
    plt.title(title_name)
    plt.grid(linestyle='--', linewidth=0.5)
    x = list()
    y = list()
    for loss_thresh in tqdm.tqdm(list(np.arange(0.05, 1, 0.05))):
        prune_ratio = 1 - cal_model_size(
            program, place, sensitivities_file, eval_metric_loss=loss_thresh)
        x.append(prune_ratio)
        y.append(loss_thresh)
    plt.plot(x, y, color='green', linewidth=0.5, marker='o', markersize=3)
    my_x_ticks = np.arange(
        min(np.array(x)) - 0.01,
        max(np.array(x)) + 0.01, 0.05)
    my_y_ticks = np.arange(0.05, 1, 0.05)
    plt.xticks(my_x_ticks, fontsize=3)
    plt.yticks(my_y_ticks, fontsize=3)
    for a, b in zip(x, y):
        plt.text(
            a,
            b, (float('%0.4f' % a), float('%0.3f' % b)),
            ha='center',
            va='bottom',
            fontsize=3)
    suffix = osp.splitext(sensitivities_file)[-1]
    plt.savefig('sensitivities.png', dpi=800)
    plt.close()