1. 图象分类
数据集:ImageNet1000类
1.1 量化
模型 |
压缩方法 |
Top-1/Top-5 Acc |
模型大小(MB) |
下载 |
MobileNetV1 |
- |
70.99%/89.68% |
xx |
下载链接 |
MobileNetV1 |
quant_post |
xx%/xx% |
xx |
下载链接 |
MobileNetV1 |
quant_aware |
xx%/xx% |
xx |
下载链接 |
MobileNetV2 |
- |
72.15%/90.65% |
xx |
下载链接 |
MobileNetV2 |
quant_post |
xx%/xx% |
xx |
下载链接 |
MobileNetV2 |
quant_aware |
xx%/xx% |
xx |
下载链接 |
ResNet50 |
- |
76.50%/93.00% |
xx |
下载链接 |
ResNet50 |
quant_post |
xx%/xx% |
xx |
下载链接 |
ResNet50 |
quant_aware |
xx%/xx% |
xx |
下载链接 |
1.2 剪枝
模型 |
压缩方法 |
Top-1/Top-5 Acc |
模型大小(MB) |
FLOPs(M) |
arm时延(ms) |
P4时延(ms) |
下载 |
MobileNetV1 |
- |
70.99%/89.68% |
xx |
xx |
xx |
xx |
下载链接 |
MobileNetV1 |
uniform -xx% |
xx%/xx% |
xx |
xx |
xx |
xx |
下载链接 |
MobileNetV1 |
sensitive -xx% |
xx%/xx% |
xx |
xx |
xx |
xx |
下载链接 |
MobileNetV2 |
- |
72.15%/90.65% |
xx |
xx |
xx |
xx |
下载链接 |
MobileNetV2 |
uniform -xx% |
xx%/xx% |
xx |
xx |
xx |
xx |
下载链接 |
MobileNetV2 |
sensitive -xx% |
xx%/xx% |
xx |
xx |
xx |
xx |
下载链接 |
ResNet34 |
- |
74.57%/92.14% |
xx |
xx |
xx |
xx |
下载链接 |
ResNet34 |
uniform -xx% |
xx%/xx% |
xx |
xx |
xx |
xx |
下载链接 |
ResNet34 |
auto -xx% |
xx%/xx% |
xx |
xx |
xx |
xx |
下载链接 |
1.3 蒸馏
模型 |
压缩方法 |
Top-1/Top-5 Acc |
模型大小(MB) |
下载 |
MobileNetV1 |
- |
70.99%/89.68% |
17 |
下载链接 |
ResNet50_vd |
- |
79.12%/94.44% |
99 |
下载链接 |
MobileNetV1 |
ResNet50_vd1 distill |
72.77%/90.68% |
17 |
下载链接 |
MobileNetV2 |
- |
72.15%/90.65% |
15 |
下载链接 |
MobileNetV2 |
ResNet50_vd distill |
74.28%/91.53% |
15 |
下载链接 |
ResNet50 |
- |
76.50%/93.00% |
99 |
下载链接 |
ResNet101 |
- |
77.56%/93.64% |
173 |
下载链接 |
ResNet50 |
ResNet101 distill |
77.29%/93.65% |
99 |
下载链接 |
2. 目标检测
2.1 量化
数据集: COCO 2017
模型 |
压缩方法 |
数据集 |
Image/GPU |
输入608 Box AP |
输入416 Box AP |
输入320 Box AP |
模型大小(MB) |
下载 |
MobileNet-V1-YOLOv3 |
- |
COCO |
8 |
29.3 |
29.3 |
27.1 |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
quant_post |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
quant_aware |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
- |
COCO |
8 |
41.4 |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
quant_post |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
quant_aware |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
数据集:WIDER-FACE
模型 |
压缩方法 |
Image/GPU |
输入尺寸 |
Easy/Medium/Hard |
模型大小(MB) |
下载 |
BlazeFace |
- |
8 |
640 |
0.915/0.892/0.797 |
xx |
下载链接 |
BlazeFace |
quant_post |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace |
quant_aware |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-Lite |
- |
8 |
640 |
0.909/0.885/0.781 |
xx |
下载链接 |
BlazeFace-Lite |
quant_post |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-Lite |
quant_aware |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-NAS |
- |
8 |
640 |
0.837/0.807/0.658 |
xx |
下载链接 |
BlazeFace-NAS |
quant_post |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-NAS |
quant_aware |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
2.2 剪枝
数据集:Pasacl VOC & COCO 2017
模型 |
压缩方法 |
数据集 |
Image/GPU |
输入608 Box AP |
输入416 Box AP |
输入320 Box AP |
模型大小(MB) |
FLOPs(M) |
arm时延(ms) |
P4时延(ms) |
下载 |
MobileNet-V1-YOLOv3 |
- |
Pasacl VOC |
8 |
76.2 |
76.7 |
75.3 |
xx |
xx |
xx |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
sensitive -xx% |
Pasacl VOC |
8 |
xx |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
- |
COCO |
8 |
29.3 |
29.3 |
27.1 |
xx |
xx |
xx |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
sensitive -xx% |
COCO |
8 |
xx |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 |
- |
COCO |
8 |
39.1 |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 |
sensitive -xx% |
COCO |
8 |
xx |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 |
sensitive -xx% |
COCO |
8 |
xx |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
- |
COCO |
8 |
41.4 |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
sensitive -xx% |
COCO |
8 |
xx |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
sensitive -xx% |
COCO |
8 |
xx |
xx |
xx |
xx |
xx |
xx |
xx |
下载链接 |
2.3 蒸馏
数据集:Pasacl VOC & COCO 2017
模型 |
压缩方法 |
数据集 |
Image/GPU |
输入608 Box AP |
输入416 Box AP |
输入320 Box AP |
模型大小(MB) |
下载 |
MobileNet-V1-YOLOv3 |
- |
Pascal VOC |
8 |
76.2 |
76.7 |
75.3 |
94 |
下载链接 |
ResNet34-YOLOv3 |
- |
Pascal VOC |
8 |
82.6 |
81.9 |
80.1 |
162 |
下载链接 |
MobileNet-V1-YOLOv3 |
ResNet34-YOLOv3 distill |
Pascal VOC |
8 |
79.0 |
78.2 |
75.5 |
94 |
下载链接 |
MobileNet-V1-YOLOv3 |
- |
COCO |
8 |
29.3 |
29.3 |
27.0 |
95 |
下载链接 |
ResNet34-YOLOv3 |
- |
COCO |
8 |
36.2 |
34.3 |
31.4 |
163 |
下载链接 |
MobileNet-V1-YOLOv3 |
ResNet34-YOLOv3 distill |
COCO |
8 |
31.4 |
30.0 |
27.1 |
95 |
下载链接 |
3. 图像分割
数据集:Cityscapes
3.1 量化
模型 |
压缩方法 |
mIoU |
模型大小(MB) |
下载 |
DeepLabv3+/MobileNetv1 |
- |
63.26 |
xx |
下载链接 |
DeepLabv3+/MobileNetv1 |
quant_post |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv1 |
quant_aware |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
- |
69.81 |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
quant_post |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
quant_aware |
xx |
xx |
下载链接 |
3.2 剪枝
模型 |
压缩方法 |
mIoU |
模型大小(MB) |
FLOPs(M) |
arm时延(ms) |
P4时延(ms) |
下载 |
DeepLabv3+/MobileNetv2 |
- |
69.81 |
xx |
xx |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
prune -xx% |
xx |
xx |
xx |
xx |
xx |
下载链接 |