# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import argparse import contextlib import os import time import math import numpy as np import paddle from paddle.distributed import ParallelEnv from paddle.optimizer.lr import PiecewiseDecay from paddle.metric.metrics import Accuracy import paddle.vision.models as models from paddleslim import QAT from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware from imagenet_dataset import ImageNetDataset def make_optimizer(step_per_epoch, parameter_list=None): assert FLAGS.lr_scheduler == 'piecewise' base_lr = FLAGS.lr lr_scheduler = FLAGS.lr_scheduler momentum = FLAGS.momentum weight_decay = FLAGS.weight_decay milestones = FLAGS.milestones boundaries = [step_per_epoch * e for e in milestones] values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)] learning_rate = PiecewiseDecay(boundaries=boundaries, values=values) optimizer = paddle.optimizer.Momentum( learning_rate=learning_rate, momentum=momentum, weight_decay=weight_decay, parameters=parameter_list) return optimizer def main(): # create model model_list = [x for x in models.__dict__["__all__"]] assert FLAGS.arch in model_list, \ "Expected FLAGS.arch in {}, but received {}".format( model_list, FLAGS.arch) model = models.__dict__[FLAGS.arch](pretrained=not FLAGS.resume) # quantize model if FLAGS.enable_quant: if not FLAGS.use_naive_api: print("use slim api") quant_config = { 'weight_quantize_type': FLAGS.weight_quantize_type, } dygraph_qat = QAT(quant_config) else: print("use navie api") dygraph_qat = ImperativeQuantAware( weight_quantize_type=FLAGS.weight_quantize_type, ) dygraph_qat.quantize(model) # prepare model = paddle.Model(model) if FLAGS.resume is not None: print("Resume from " + FLAGS.resume) model.load(FLAGS.resume) train_dataset = ImageNetDataset( os.path.join(FLAGS.data, 'train'), mode='train') val_dataset = ImageNetDataset( os.path.join(FLAGS.data, FLAGS.val_dir), mode='val') optim = make_optimizer( np.ceil( float(len(train_dataset)) / FLAGS.batch_size / ParallelEnv().nranks), parameter_list=model.parameters()) model.prepare(optim, paddle.nn.CrossEntropyLoss(), Accuracy(topk=(1, 5))) # test if FLAGS.eval_only: model.evaluate( val_dataset, batch_size=FLAGS.batch_size, num_workers=FLAGS.num_workers) return # train output_dir = os.path.join(FLAGS.output_dir, "checkpoint", FLAGS.arch + "_checkpoint", time.strftime('%Y-%m-%d-%H-%M', time.localtime())) if not os.path.exists(output_dir): os.makedirs(output_dir) model.fit(train_dataset, val_dataset, batch_size=FLAGS.batch_size, epochs=FLAGS.epoch, save_dir=output_dir, num_workers=FLAGS.num_workers) # save if FLAGS.enable_quant: quant_output_dir = os.path.join(FLAGS.output_dir, FLAGS.arch, "model") input_spec = paddle.static.InputSpec( shape=[None, 3, 224, 224], dtype='float32') dygraph_qat.save_quantized_model(model.network, quant_output_dir, [input_spec]) print("save all checkpoints in " + output_dir) print("save quantized inference model in " + quant_output_dir) if __name__ == '__main__': parser = argparse.ArgumentParser("Training on ImageNet") # model parser.add_argument( "--arch", type=str, default='mobilenet_v2', help="model name") parser.add_argument( "--resume", default=None, type=str, help="checkpoint path to resume") parser.add_argument( "--eval_only", action='store_true', help="only evaluate the model") parser.add_argument( "--output_dir", type=str, default='output', help="save dir") # data parser.add_argument( '--data', metavar='DIR', default="", help='path to dataset ' '(should have subdirectories named "train" and "val"') parser.add_argument( '--val_dir', default="val", help='the dir that saves val images for paddle.Model') # train parser.add_argument( "-e", "--epoch", default=1, type=int, help="number of epoch") parser.add_argument( "-b", "--batch_size", default=10, type=int, help="batch size") parser.add_argument( "-n", "--num_workers", default=2, type=int, help="dataloader workers") parser.add_argument( '--lr', default=0.0001, type=float, metavar='LR', help='initial learning rate') parser.add_argument( "--lr-scheduler", default='piecewise', type=str, help="learning rate scheduler") parser.add_argument( "--milestones", nargs='+', type=int, default=[1, 2, 3, 4, 5], help="piecewise decay milestones") parser.add_argument( "--weight-decay", default=1e-4, type=float, help="weight decay") parser.add_argument("--momentum", default=0.9, type=float, help="momentum") # quant parser.add_argument( "--enable_quant", action='store_true', help="enable quant model") parser.add_argument( "--use_naive_api", action='store_true', help="use the navie api") parser.add_argument( "--weight_quantize_type", type=str, default='abs_max', help="") FLAGS = parser.parse_args() assert FLAGS.data, "error: must provide data path" main()