1. 图像分类
数据集:ImageNet1000类
1.1 量化
模型 |
压缩方法 |
Top-1/Top-5 Acc |
模型体积(MB) |
下载 |
MobileNetV1 |
FP32 baseline |
70.99%/89.68% |
xx |
下载链接 |
MobileNetV1 |
quant_post |
xx%/xx% |
xx |
下载链接 |
MobileNetV1 |
quant_aware |
xx%/xx% |
xx |
下载链接 |
MobileNetV2 |
FP32 baseline |
72.15%/90.65% |
xx |
下载链接 |
MobileNetV2 |
quant_post |
xx%/xx% |
xx |
下载链接 |
MobileNetV2 |
quant_aware |
xx%/xx% |
xx |
下载链接 |
ResNet50 |
FP32 baseline |
76.50%/93.00% |
xx |
下载链接 |
ResNet50 |
quant_post |
xx%/xx% |
xx |
下载链接 |
ResNet50 |
quant_aware |
xx%/xx% |
xx |
下载链接 |
1.2 剪裁
模型 |
压缩方法 |
Top-1/Top-5 Acc |
模型体积(MB) |
GFLOPs |
下载 |
MobileNetV1 |
baseline |
70.99%/89.68% |
17 |
1.11 |
下载链接 |
MobileNetV1 |
uniform -50% |
69.4%/88.66% (-1.59%/-1.02%) |
9 |
0.56 |
下载链接 |
MobileNetV1 |
sensitive -30% |
70.4%/89.3% (-0.59%/-0.38%) |
12 |
0.74 |
下载链接 |
MobileNetV1 |
sensitive -50% |
69.8% / 88.9% (-1.19%/-0.78%) |
9 |
0.56 |
下载链接 |
MobileNetV2 |
baseline |
72.15%/90.65% |
15 |
0.59 |
下载链接 |
MobileNetV2 |
uniform -50% |
65.79%/86.11% (-6.35%/-4.47%) |
11 |
0.296 |
下载链接 |
ResNet34 |
baseline |
72.15%/90.65% |
84 |
7.36 |
下载链接 |
ResNet34 |
uniform -50% |
70.99%/89.95% (-1.36%/-0.87%) |
41 |
3.67 |
下载链接 |
ResNet34 |
auto -55.05% |
70.24%/89.63% (-2.04%/-1.06%) |
33 |
3.31 |
下载链接 |
1.3 蒸馏
模型 |
压缩方法 |
Top-1/Top-5 Acc |
模型体积(MB) |
下载 |
MobileNetV1 |
student |
70.99%/89.68% |
17 |
下载链接 |
ResNet50_vd |
teacher |
79.12%/94.44% |
99 |
下载链接 |
MobileNetV1 |
ResNet50_vd1 distill |
72.77%/90.68% (+1.78%/+1.00%) |
17 |
下载链接 |
MobileNetV2 |
student |
72.15%/90.65% |
15 |
下载链接 |
MobileNetV2 |
ResNet50_vd distill |
74.28%/91.53% (+2.13%/+0.88%) |
15 |
下载链接 |
ResNet50 |
student |
76.50%/93.00% |
99 |
下载链接 |
ResNet101 |
teacher |
77.56%/93.64% |
173 |
下载链接 |
ResNet50 |
ResNet101 distill |
77.29%/93.65% (+0.79%/+0.65%) |
99 |
下载链接 |
2. 目标检测
2.1 量化
数据集: COCO 2017
模型 |
压缩方法 |
数据集 |
Image/GPU |
输入608 Box AP |
输入416 Box AP |
输入320 Box AP |
模型体积(MB) |
下载 |
MobileNet-V1-YOLOv3 |
FP32 baseline |
COCO |
8 |
29.3 |
29.3 |
27.1 |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
quant_post |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
MobileNet-V1-YOLOv3 |
quant_aware |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
FP32 baseline |
COCO |
8 |
41.4 |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
quant_post |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
quant_aware |
COCO |
8 |
xx |
xx |
xx |
xx |
下载链接 |
数据集:WIDER-FACE
模型 |
压缩方法 |
Image/GPU |
输入尺寸 |
Easy/Medium/Hard |
模型体积(MB) |
下载 |
BlazeFace |
FP32 baseline |
8 |
640 |
0.915/0.892/0.797 |
xx |
下载链接 |
BlazeFace |
quant_post |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace |
quant_aware |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-Lite |
FP32 baseline |
8 |
640 |
0.909/0.885/0.781 |
xx |
下载链接 |
BlazeFace-Lite |
quant_post |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-Lite |
quant_aware |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-NAS |
FP32 baseline |
8 |
640 |
0.837/0.807/0.658 |
xx |
下载链接 |
BlazeFace-NAS |
quant_post |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
BlazeFace-NAS |
quant_aware |
8 |
640 |
xx/xx/xx |
xx |
下载链接 |
2.2 剪裁
数据集:Pasacl VOC & COCO 2017
模型 |
压缩方法 |
数据集 |
Image/GPU |
输入608 Box AP |
输入416 Box AP |
输入320 Box AP |
模型体积(MB) |
GFLOPs (608*608) |
下载 |
MobileNet-V1-YOLOv3 |
baseline |
Pascal VOC |
8 |
76.2 |
76.7 |
75.3 |
94 |
40.49 |
下载链接 |
MobileNet-V1-YOLOv3 |
sensitive -52.88% |
Pascal VOC |
8 |
77.6 (+1.4) |
77.7 (1.0) |
75.5 (+0.2) |
31 |
19.08 |
下载链接 |
MobileNet-V1-YOLOv3 |
baseline |
COCO |
8 |
29.3 |
29.3 |
27.0 |
95 |
41.35 |
下载链接 |
MobileNet-V1-YOLOv3 |
sensitive -51.77% |
COCO |
8 |
26.0 (-3.3) |
25.1 (-4.2) |
22.6 (-4.4) |
32 |
19.94 |
下载链接 |
R50-dcn-YOLOv3 |
baseline |
COCO |
8 |
39.1 |
- |
- |
177 |
89.60 |
下载链接 |
R50-dcn-YOLOv3 |
sensitive -9.37% |
COCO |
8 |
39.3 (+0.2) |
- |
- |
150 |
81.20 |
下载链接 |
R50-dcn-YOLOv3 |
sensitive -24.68% |
COCO |
8 |
37.3 (-1.8) |
- |
- |
113 |
67.48 |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
baseline |
COCO |
8 |
41.4 |
- |
- |
177 |
89.60 |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
sensitive -9.37% |
COCO |
8 |
40.5 (-0.9) |
- |
- |
150 |
81.20 |
下载链接 |
R50-dcn-YOLOv3 obj365_pretrain |
sensitive -24.68% |
COCO |
8 |
37.8 (-3.3) |
- |
- |
113 |
67.48 |
下载链接 |
2.3 蒸馏
数据集:Pasacl VOC & COCO 2017
模型 |
压缩方法 |
数据集 |
Image/GPU |
输入608 Box AP |
输入416 Box AP |
输入320 Box AP |
模型体积(MB) |
下载 |
MobileNet-V1-YOLOv3 |
student |
Pascal VOC |
8 |
76.2 |
76.7 |
75.3 |
94 |
下载链接 |
ResNet34-YOLOv3 |
teacher |
Pascal VOC |
8 |
82.6 |
81.9 |
80.1 |
162 |
下载链接 |
MobileNet-V1-YOLOv3 |
ResNet34-YOLOv3 distill |
Pascal VOC |
8 |
79.0 (+2.8) |
78.2 (+1.5) |
75.5 (+0.2) |
94 |
下载链接 |
MobileNet-V1-YOLOv3 |
student |
COCO |
8 |
29.3 |
29.3 |
27.0 |
95 |
下载链接 |
ResNet34-YOLOv3 |
teacher |
COCO |
8 |
36.2 |
34.3 |
31.4 |
163 |
下载链接 |
MobileNet-V1-YOLOv3 |
ResNet34-YOLOv3 distill |
COCO |
8 |
31.4 (+2.1) |
30.0 (+0.7) |
27.1 (+0.1) |
95 |
下载链接 |
3. 图像分割
数据集:Cityscapes
3.1 量化
模型 |
压缩方法 |
mIoU |
模型体积(MB) |
下载 |
DeepLabv3+/MobileNetv1 |
FP32 baseline |
63.26 |
xx |
下载链接 |
DeepLabv3+/MobileNetv1 |
quant_post |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv1 |
quant_aware |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
FP32 baseline |
69.81 |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
quant_post |
xx |
xx |
下载链接 |
DeepLabv3+/MobileNetv2 |
quant_aware |
xx |
xx |
下载链接 |
3.2 剪裁
模型 |
压缩方法 |
mIoU |
模型体积(MB) |
GFLOPs |
下载 |
fast-scnn |
baseline |
69.64 |
11 |
14.41 |
下载链接 |
fast-scnn |
uniform -17.07% |
69.58 (-0.06) |
8.5 |
11.95 |
下载链接 |
fast-scnn |
sensitive -47.60% |
66.68 (-2.96) |
5.7 |
7.55 |
下载链接 |