import numpy as np from ..common import get_logger from ..core import GraphWrapper import paddle __all__ = ["UnstructuredPruner"] class UnstructuredPruner(): """ The unstructure pruner. Args: - program(paddle.static.Program): The model to be pruned. - mode(str): the mode to prune the model, must be selected from 'ratio' and 'threshold'. - ratio(float): the ratio to prune the model. Only set it when mode=='ratio'. Default: 0.5. - threshold(float): the threshold to prune the model. Only set it when mode=='threshold'. Default: 1e-5. - scope(paddle.static.Scope): The scope storing values of all variables. None means paddle.static.global_scope. Default: None. - place(CPUPlace | CUDAPlace): The device place used to execute model. None means CPUPlace. Default: None. - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params. """ def __init__(self, program, mode, ratio=0.5, threshold=1e-5, scope=None, place=None, skip_params_func=None): self.mode = mode self.ratio = ratio self.threshold = threshold assert self.mode in [ 'ratio', 'threshold' ], "mode must be selected from 'ratio' and 'threshold'" self.scope = paddle.static.global_scope() if scope == None else scope self.place = paddle.CPUPlace() if place is None else place if skip_params_func is None: skip_params_func = self._get_skip_params self.skip_params = skip_params_func(program) self.masks = self._apply_masks(program) def _apply_masks(self, program): params = [] masks = [] for param in program.all_parameters(): mask = program.global_block().create_var( name=param.name + "_mask", shape=param.shape, dtype=param.dtype, type=param.type, persistable=param.persistable, stop_gradient=True) self.scope.var(param.name + "_mask").get_tensor().set( np.ones(mask.shape).astype("float32"), self.place) params.append(param) masks.append(mask) d_masks = {} for _param, _mask in zip(params, masks): d_masks[_param.name] = _mask.name return d_masks def summarize_weights(self, program, ratio=0.1): """ The function is used to get the weights corresponding to a given ratio when you are uncertain about the threshold in __init__() function above. For example, when given 0.1 as ratio, the function will print the weight value, the abs(weights) lower than which count for 10% of the total numbers. Args: - program(paddle.static.Program): The model which have all the parameters. - ratio(float): The ratio illustrated above. Return: - threshold(float): a threshold corresponding to the input ratio. """ data = [] for param in program.all_parameters(): data.append( np.array(paddle.static.global_scope().find_var(param.name) .get_tensor()).flatten()) data = np.concatenate(data, axis=0) threshold = np.sort(np.abs(data))[max(0, int(ratio * len(data) - 1))] return threshold def sparse_by_layer(self, program): """ The function is used to get the density at each layer, usually called for debuggings. Args: - program(paddle.static.Program): The current model. Returns: - layer_sparse(Dict): sparsity for each parameter. """ layer_sparse = {} total = 0 values = 0 for param in program.all_parameters(): value = np.count_nonzero( np.array(paddle.static.global_scope().find_var(param.name) .get_tensor())) layer_sparse[param.name] = value / np.product(param.shape) return layer_sparse def update_threshold(self): ''' Update the threshold after each optimization step in RATIO mode. User should overwrite this method to define their own weight importance (Default is based on their absolute values). ''' params_flatten = [] for param in self.masks: if not self._should_prune_param(param): continue t_param = self.scope.find_var(param).get_tensor() v_param = np.array(t_param) params_flatten.append(v_param.flatten()) params_flatten = np.concatenate(params_flatten, axis=0) total_len = len(params_flatten) self.threshold = np.sort(np.abs(params_flatten))[max( 0, int(self.ratio * total_len) - 1)] def _update_params_masks(self): for param in self.masks: if not self._should_prune_param(param): continue mask_name = self.masks[param] t_param = self.scope.find_var(param).get_tensor() t_mask = self.scope.find_var(mask_name).get_tensor() v_param = np.array(t_param) v_param[np.abs(v_param) < self.threshold] = 0 v_mask = (v_param != 0).astype(v_param.dtype) t_mask.set(v_mask, self.place) v_param = np.array(t_param) * np.array(t_mask) t_param.set(v_param, self.place) def step(self): """ Update the threshold after each optimization step. """ if self.mode == 'threshold': pass elif self.mode == 'ratio': self.update_threshold() self._update_params_masks() def update_params(self): """ Update the parameters given self.masks, usually called before saving models. """ for param in self.masks: mask = self.masks[param] t_param = self.scope.find_var(param).get_tensor() t_mask = self.scope.find_var(mask).get_tensor() v_param = np.array(t_param) * np.array(t_mask) t_param.set(v_param, self.place) @staticmethod def total_sparse(program): """ The function is used to get the whole model's density (1-sparsity). It is static because during testing, we can calculate sparsity without initializing a pruner instance. Args: - program(paddle.static.Program): The current model. Returns: - density(float): the model's density. """ total = 0 values = 0 for param in program.all_parameters(): total += np.product(param.shape) values += np.count_nonzero( np.array(paddle.static.global_scope().find_var(param.name) .get_tensor())) density = float(values) / total return density def _get_skip_params(self, program): """ The function is used to get a set of all the skipped parameters when performing pruning. By default, the normalization-related ones will not be pruned. Developers could replace it by passing their own function when initializing the UnstructuredPruner instance. Args: - program(paddle.static.Program): the current model. Returns: - skip_params(Set): a set of parameters' names. """ skip_params = set() graph = GraphWrapper(program) for op in graph.ops(): if 'norm' in op.type() and 'grad' not in op.type(): for input in op.all_inputs(): skip_params.add(input.name()) return skip_params def _should_prune_param(self, param): should_prune = param not in self.skip_params return should_prune