# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from paddleslim.core import GraphWrapper import paddle.nn.functional as F def merge(teacher_program, student_program, data_name_map, place, scope=None, teacher_scope=None, name_prefix='teacher_', merge_feed=True): """Merge teacher program into student program and add a uniform prefix to the names of all vars in teacher program Args: teacher_program(Program): The input teacher model paddle program student_program(Program): The input student model paddle program data_map_map(dict): Mapping of teacher input interface name and student input interface name, where key of dict is the input name of teacher_program, and value is the input name of student_program. place(CPUPlace()|CUDAPlace(N)): This parameter represents paddle run on which device. scope(Scope): This parameter indicates the variable scope used by the program. If not specified, the default global scope will be used. Default: None name_prefix(str): Name prefix added for all vars of the teacher program. Default: 'teacher_' merge_feed(bool): Wheather to merge feed op when merge program. Default: True. Returns: None """ if scope == None: scope = paddle.static.global_scope() if teacher_scope == None: teacher_scope = scope teacher_program = teacher_program.clone(for_test=True) for teacher_var in teacher_program.list_vars(): skip_rename = False if teacher_var.name != 'fetch' and (not merge_feed or teacher_var.name != 'feed'): if teacher_var.name in data_name_map.keys(): new_name = data_name_map[teacher_var.name] if new_name == teacher_var.name: skip_rename = True else: new_name = name_prefix + teacher_var.name if not skip_rename: # scope var rename old_var = teacher_scope.var(teacher_var.name).get_tensor() renamed_var = scope.var(new_name).get_tensor() renamed_var.set(np.array(old_var), place) # program var rename renamed_var = teacher_program.global_block()._rename_var( teacher_var.name, new_name) for teacher_var in teacher_program.list_vars(): if teacher_var.name != 'fetch' and (not merge_feed or teacher_var.name != 'feed'): # student program add var new_var = student_program.global_block()._clone_variable( teacher_var, force_persistable=False) new_var.stop_gradient = True for block in teacher_program.blocks: for op in block.ops: if (not merge_feed or op.type != 'feed') and op.type != 'fetch': inputs = {} outputs = {} attrs = {} for input_name in op.input_names: inputs[input_name] = [ block.var(in_var_name) for in_var_name in op.input(input_name) ] for output_name in op.output_names: outputs[output_name] = [ block.var(out_var_name) for out_var_name in op.output(output_name) ] for attr_name in op.attr_names: attrs[attr_name] = op.attr(attr_name) student_program.global_block().append_op( type=op.type, inputs=inputs, outputs=outputs, attrs=attrs) student_graph = GraphWrapper(student_program) for op in student_graph.ops(): belongsto_teacher = False for inp in op.all_inputs(): if 'teacher' in inp.name(): belongsto_teacher = True break if belongsto_teacher: op._op._set_attr("skip_quant", True) def fsp(teacher_var1_name, teacher_var2_name, student_var1_name, student_var2_name, program=None): """Combine variables from student model and teacher model by fsp-loss. Args: teacher_var1_name(str): The name of teacher_var1. teacher_var2_name(str): The name of teacher_var2. Except for the second dimension, all other dimensions should be consistent with teacher_var1. student_var1_name(str): The name of student_var1. student_var2_name(str): The name of student_var2. Except for the second dimension, all other dimensions should be consistent with student_var1. program(Program): The input distiller program. If not specified, the default program will be used. Default: None Returns: Variable: fsp distiller loss. """ if program == None: program = paddle.static.default_main_program() teacher_var1 = program.global_block().var(teacher_var1_name) teacher_var2 = program.global_block().var(teacher_var2_name) student_var1 = program.global_block().var(student_var1_name) student_var2 = program.global_block().var(student_var2_name) teacher_fsp_matrix = paddle.fluid.layers.fsp_matrix(teacher_var1, teacher_var2) student_fsp_matrix = paddle.fluid.layers.fsp_matrix(student_var1, student_var2) fsp_loss = paddle.mean( paddle.nn.functional.square_error_cost(student_fsp_matrix, teacher_fsp_matrix)) return fsp_loss def l2(teacher_var_name, student_var_name, program=None): """Combine variables from student model and teacher model by l2-loss. Args: teacher_var_name(str): The name of teacher_var. student_var_name(str): The name of student_var. program(Program): The input distiller program. If not specified, the default program will be used. Default: None Returns: Variable: l2 distiller loss. """ if program == None: program = paddle.static.default_main_program() student_var = program.global_block().var(student_var_name) teacher_var = program.global_block().var(teacher_var_name) l2_loss = paddle.mean( paddle.nn.functional.square_error_cost(student_var, teacher_var)) return l2_loss def soft_label(teacher_var_name, student_var_name, program=None, teacher_temperature=1., student_temperature=1.): """Combine variables from student model and teacher model by soft-label-loss. Args: teacher_var_name(str): The name of teacher_var. student_var_name(str): The name of student_var. program(Program): The input distiller program. If not specified, the default program will be used. Default: None teacher_temperature(float): Temperature used to divide teacher_feature_map before softmax. Default: 1.0 student_temperature(float): Temperature used to divide student_feature_map before softmax. Default: 1.0 Returns: Variable: l2 distiller loss. """ if program == None: program = paddle.static.default_main_program() student_var = program.global_block().var(student_var_name) teacher_var = program.global_block().var(teacher_var_name) teacher_var.stop_gradient = True student_var = paddle.nn.functional.softmax(student_var / student_temperature) teacher_var = paddle.nn.functional.softmax(teacher_var / teacher_temperature) soft_label_loss = paddle.mean( paddle.nn.functional.cross_entropy( input=student_var, label=teacher_var, soft_label=True, use_softmax=False)) return soft_label_loss def loss(loss_func, program=None, **kwargs): """Combine variables from student model and teacher model by self defined loss. Args: program(Program): The input distiller program. If not specified, the default program will be used. Default: None loss_func(function): The user self defined loss function. Returns: Variable: self defined distiller loss. """ if program == None: program = paddle.static.default_main_program() func_parameters = {} for item in kwargs.items(): if isinstance(item[1], str): func_parameters.setdefault(item[0], program.global_block().var(item[1])) else: func_parameters.setdefault(item[0], item[1]) loss = loss_func(**func_parameters) return loss def _top_mask(x): top_value, top_index = paddle.topk(x, 1) return paddle.cast(x == top_value, "int32") def _cal_tc_nc_pred(x, top_mask): """Calculate the predictions of target class and non-target class. The predictions of target class is a binary distribution. And after removing the target class, the softmax on the remaining parts produces the non-target predictions. """ pred = paddle.nn.functional.softmax(x) fp_mask = paddle.cast(top_mask, "float32") top_value = paddle.sum(fp_mask * pred, axis=1, keepdim=True) tc_pred = paddle.concat([top_value, 1 - top_value], axis=1) tmp = paddle.assign(x) tmp = tmp + (-100000 * top_mask) nc_pred = paddle.nn.functional.softmax(tmp) return tc_pred, nc_pred def _dkd_loss(student_logits, teacher_logits, temperature=1.0, alpha=1.0, beta=1.0): mask = _top_mask(teacher_logits) print(f"mask: {mask.shape}") print( f"student_logits: {student_logits.shape}; teacher_logits: {teacher_logits.shape}" ) s_tc_pred, s_nc_pred = _cal_tc_nc_pred(student_logits / temperature, mask) t_tc_pred, t_nc_pred = _cal_tc_nc_pred(teacher_logits / temperature, mask) tc_loss = paddle.nn.functional.kl_div( s_tc_pred, t_tc_pred, reduction='mean') nc_loss = paddle.nn.functional.kl_div( s_nc_pred, t_nc_pred, reduction='mean') loss = alpha * tc_loss + beta * nc_loss return loss * temperature**2 def dkd(teacher_var_name, student_var_name, program=None, temperature=1.0, alpha=1.0, beta=1.0): """Combine variables from student model and teacher model by Decoupled Knowledge Distillation loss (aka. dkd-loss). Reference: https://github.com/megvii-research/mdistiller Args: teacher_var_name(str): The name of teacher_var. student_var_name(str): The name of student_var. program(Program): The input distiller program. If not specified, the default program will be used. Default: None temperature(float): Temperature used to divide teacher_feature_map before softmax. Default: 1.0 alpha(float): The weight of target class loss. Default: 1.0 beta(float): The weight of none-target class loss. Default: 1.0 Returns: Variable: dkd distiller loss. """ if program == None: program = paddle.static.default_main_program() student_var = program.global_block().var(student_var_name) teacher_var = program.global_block().var(teacher_var_name) return _dkd_loss( student_var, teacher_var, temperature=temperature, alpha=alpha, beta=beta) def skd(teacher_var_name, student_var_name, program=None, multiplier=None): """Combine variables from student model and teacher model by Spherical Knowledge Distillation loss (aka. skd-loss). Reference: https://github.com/forjiuzhou/Spherical-Knowledge-Distillation Args: teacher_var_name(str): The name of teacher_var. student_var_name(str): The name of student_var. program(Program): The input distiller program. If not specified, the default program will be used. Default: None multiplier(float): The multiplier to recover its norm to the original level. When it's None, the appropriate multiplier can be computed by teacher's logits with paddle.std(output_t, axis=1). Default: None. Returns: Variable: skd distiller loss. """ if program == None: program = paddle.static.default_main_program() student_var = program.global_block().var(student_var_name) teacher_var = program.global_block().var(teacher_var_name) teacher_var.stop_gradient = True if multiplier is None: multiplier = paddle.std(teacher_var, axis=1, keepdim=True) logits_student = F.layer_norm( student_var, student_var.shape[1:], weight=None, bias=None, epsilon=1e-7) * multiplier logits_teacher = F.layer_norm( teacher_var, teacher_var.shape[1:], weight=None, bias=None, epsilon=1e-7) * multiplier student_out = F.softmax(logits_student, axis=1) teacher_out = F.softmax(logits_teacher, axis=1) skd_loss = paddle.mean( F.cross_entropy( input=student_out, label=teacher_out, soft_label=True, use_softmax=False)) return skd_loss