# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np import argparse from tqdm import tqdm import paddle from paddleslim.common import load_config as load_slim_config from paddleslim.common import get_logger import sys sys.path.append('../PaddleOCR') from ppocr.data import build_dataloader from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric logger = get_logger(__name__, level=logging.INFO) def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default='./configs/ppocrv3_det_qat_dist.yaml', help="path of compression strategy config.") parser.add_argument( '--model_dir', type=str, default='./ch_PP-OCRv3_det_infer', help='model directory') return parser def eval(): devices = paddle.device.get_device().split(':')[0] places = paddle.device._convert_to_place(devices) exe = paddle.static.Executor(places) val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model( global_config["model_dir"], exe, model_filename=global_config["model_filename"], params_filename=global_config["params_filename"]) logger.info('Loaded model from: {}'.format(global_config["model_dir"])) val_loader = build_dataloader(all_config, 'Eval', devices, logger) post_process_class = build_post_process(all_config['PostProcess'], global_config) eval_class = build_metric(all_config['Metric']) model_type = global_config['model_type'] with tqdm( total=len(val_loader), bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}', ncols=80) as t: for batch_id, batch in enumerate(val_loader): images = batch[0] preds, = exe.run(val_program, feed={feed_target_names[0]: images}, fetch_list=fetch_targets) batch_numpy = [] for item in batch: batch_numpy.append(np.array(item)) if model_type == 'det': preds_map = {'maps': preds} post_result = post_process_class(preds_map, batch_numpy[1]) eval_class(post_result, batch_numpy) elif model_type == 'rec': post_result = post_process_class(preds, batch_numpy[1]) eval_class(post_result, batch_numpy) t.update() metric = eval_class.get_metric() logger.info('metric eval ***************') for k, v in metric.items(): logger.info('{}:{}'.format(k, v)) return metric def main(): global all_config, global_config all_config = load_slim_config(args.config_path) global_config = all_config["Global"] eval() if __name__ == '__main__': paddle.enable_static() parser = argsparser() args = parser.parse_args() main()