# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import copy import numpy as np import copy import inspect import shutil from time import gmtime, strftime import platform import paddle import itertools import paddle.distributed.fleet as fleet from ..quant.quanter import convert, quant_post from ..common.recover_program import recover_inference_program from ..common import get_logger from ..common.patterns import get_patterns from ..common.load_model import load_inference_model, get_model_dir, export_onnx from ..common.dataloader import wrap_dataloader, get_feed_vars from ..common.config_helper import load_config from ..analysis import TableLatencyPredictor from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes from .strategy_config import TrainConfig, ProgramInfo, merge_config from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config from .config_helpers import extract_strategy_config, extract_train_config from .utils.predict import with_variable_shape _logger = get_logger(__name__, level=logging.INFO) try: if platform.system().lower() == 'linux': from ..quant import post_quant_hpo except Exception as e: _logger.warning(e) class AutoCompression: def __init__(self, model_dir, train_dataloader, model_filename=None, params_filename=None, save_dir='./output', config=None, input_shapes=None, target_speedup=None, eval_callback=None, eval_dataloader=None, deploy_hardware='gpu'): """ Compress inference model automatically. Args: model_dir(str): The path of inference model that will be compressed, and the model and params that saved by ``paddle.static.save_inference_model`` are under the path. train_dataloader(Python Generator, Paddle.io.DataLoader): The Generator or Dataloader provides train data, and it could return a batch every time. model_filename(str): The name of model file. params_filename(str): The name of params file. save_dir(str): The path to save compressed model. The models in this directory will be overwrited after calling 'compress()' function. input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. If it is a dict, the key is the name of input and the value is the shape. Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}. If it is a list or tuple, the number of model's inputs should be 1. And the shape of input will be set input_shapes. None means keeping the original shapes, then the compression strategies searching may be skipped. Default: None. train_config(dict, optional): The train config in the compression process, the key can reference ``_ . Only one strategy(quant_post with hyperparameter optimization) can set train_config to None. Default: None. strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as 1. set ``Quantization`` and ``Distillation`` to get quant_aware and distillation compress config. The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ . The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ . 2. set ``Quantization`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config. The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L24`_ . The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L73`_ . 3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config. The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ . The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ . 4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config. The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ . The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ . 5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config. The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L82`_ . The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ . 6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config. The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L91`_ . The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ . 7. set ``Distillation`` to use one teacher modol to distillation student model. The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L39`_ . 8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model. The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L56`_ . If set to None, will choose a strategy automatically. Default: None. target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None. eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None. eval_dataloader(paddle.io.Dataloader, optional): The Generator or Dataloader provides eval data, and it could return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None. deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'. """ self.model_dir = model_dir.rstrip('/') self.updated_model_dir, self.model_filename, self.params_filename = get_model_dir( model_dir, model_filename, params_filename) self.final_dir = save_dir if not os.path.exists(self.final_dir): os.makedirs(self.final_dir) # load config if isinstance(config, str): config = load_config(config) self.train_config = extract_train_config(config) elif isinstance(config, dict): if 'TrainConfig' in config: self.train_config = TrainConfig(**config.pop('TrainConfig')) else: self.train_config = None else: self.train_config = None self.strategy_config = extract_strategy_config(config) # prepare dataloader self.feed_vars = get_feed_vars(self.model_dir, model_filename, params_filename) self.train_dataloader = wrap_dataloader(train_dataloader, self.feed_vars) self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars) if self.eval_dataloader is None: self.eval_dataloader = self._get_eval_dataloader( self.train_dataloader) self.target_speedup = target_speedup self.eval_function = eval_callback self.deploy_hardware = deploy_hardware paddle.enable_static() self._exe, self._places = self._prepare_envs() self.model_type = self._get_model_type() if self.train_config is not None and self.train_config.use_fleet: fleet.init(is_collective=True) if with_variable_shape( self.model_dir, model_filename=model_filename, params_filename=params_filename) and input_shapes is not None: infer_shape_model = self.create_tmp_dir( self.final_dir, prefix="infer_shape_model_") self._infer_shape(self.model_dir, self.model_filename, self.params_filename, input_shapes, infer_shape_model) self.model_dir = infer_shape_model self.model_filename = "infered_shape.pdmodel" self.params_filename = "infered_shape.pdiparams" if self.strategy_config is None: strategy_config = prepare_strategy( self._exe, self._places, self.model_dir, self.model_filename, self.params_filename, self.target_speedup, self.deploy_hardware, self.model_type) self.strategy_config = strategy_config elif isinstance(self.strategy_config, dict): self.strategy_config = [self.strategy_config] elif isinstance(self.strategy_config, str): strategy_config = create_strategy_config(self.strategy_config, self.model_type) self._strategy, self._config = self._prepare_strategy( self.strategy_config) self.train_config = self._get_final_train_config( self.train_config, self._strategy, self.model_type) _logger.info(f"Selected strategies: {self._strategy}") def _get_final_train_config(self, train_config, strategy_config, model_type): # If train_config is None, set default train_config if train_config is None: train_config = create_train_config(strategy_config, model_type) train_configs = [train_config] for idx in range(1, len(self._strategy)): if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]: ### If compress strategy more than one, the TrainConfig in the yaml only used in prune. ### The TrainConfig for quantization is extrapolate from above. tmp_train_config = copy.deepcopy(train_config.__dict__) ### the epoch, train_iter, learning rate of quant is 10% of the prune compress if self.model_type != 'transformer': tmp_train_config['epochs'] = max( int(train_config.epochs * 0.1), 1) if train_config.train_iter is not None: tmp_train_config['train_iter'] = int( train_config.train_iter * 0.1) if isinstance(train_config.learning_rate, float): tmp_train_config[ 'learning_rate'] = train_config.learning_rate * 0.1 else: if 'learning_rate' in train_config.learning_rate: tmp_train_config['learning_rate'][ 'learning_rate'] = train_config.learning_rate[ 'learning_rate'] * 0.1 else: ### learning rate decay is PiecewiseDecay tmp_train_config['learning_rate']['values'] = list( map(lambda x: x * 0.1, train_config.learning_rate[ 'values'])) train_cfg = TrainConfig(**tmp_train_config) else: tmp_train_config = copy.deepcopy(train_config.__dict__) train_cfg = TrainConfig(**tmp_train_config) train_configs.append(train_cfg) return train_configs def _infer_shape(self, model_dir, model_filename, params_filename, input_shapes, save_path): assert type(input_shapes) in [ dict, list, tuple ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.' paddle.enable_static() exe = paddle.static.Executor(paddle.CPUPlace()) [inference_program, feed_target_names, fetch_targets] = load_inference_model(model_dir, exe, model_filename, params_filename) if type(input_shapes) in [list, tuple]: assert len( feed_target_names ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}." input_shapes = {feed_target_names[0]: input_shapes} feed_vars = [] for var_ in inference_program.list_vars(): if var_.name in feed_target_names: feed_vars.append(var_) var_.desc.set_shape(input_shapes[var_.name]) for block in inference_program.blocks: for op in block.ops: if op.type not in ["feed", "fetch"]: op.desc.infer_shape(block.desc) save_path = os.path.join(save_path, "infered_shape") os.makedirs(save_path) paddle.static.save_inference_model( save_path, feed_vars, fetch_targets, exe, program=inference_program, clip_extra=False) _logger.info(f"Saved model infered shape to {save_path}") @property def deploy_hardware(self): return self._deploy_hardware @deploy_hardware.setter def deploy_hardware(self, value): supported_hardware = TableLatencyPredictor.hardware_list + [ 'gpu', # nvidia gpu "cpu", # intel cpu ] if value is not None: # Fail-fast when deploy hardware is set explicitly assert ( value in supported_hardware ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None." self._deploy_hardware = value def _get_eval_dataloader(self, train_dataloader): def _gen(): len_loader = len(list(train_dataloader())) ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader slice_len = min(5000, len_loader) ret = list(itertools.islice(train_dataloader(), slice_len)) for i in ret: yield i return _gen def _prepare_envs(self): devices = paddle.device.get_device().split(':')[0] places = paddle.device._convert_to_place(devices) _logger.info(f"devices: {devices}") exe = paddle.static.Executor(places) return exe, places def _get_model_type(self): [inference_program, _, _] = (load_inference_model( self.model_dir, model_filename=self.model_filename, params_filename=self.params_filename, executor=self._exe)) _, _, model_type = get_patterns(inference_program) if self.model_filename is None: opt_model_filename = '__opt_model__' else: opt_model_filename = self.model_filename program_bytes = inference_program._remove_training_info( clip_extra=False).desc.serialize_to_string() with open( os.path.join(self.updated_model_dir, opt_model_filename), "wb") as f: f.write(program_bytes) shutil.move( os.path.join(self.updated_model_dir, opt_model_filename), os.path.join(self.updated_model_dir, self.model_filename)) _logger.info(f"Detect model type: {model_type}") return model_type def _prepare_strategy(self, strategy_config): if not isinstance(strategy_config, list): strategy_config = list(list(strategy_config)) strategy = [] config = [] for strategy_c in strategy_config: quant_config = strategy_c.get("Quantization", None) hpo_config = strategy_c.get("HyperParameterOptimization", None) prune_config = strategy_c.get("ChannelPrune", None) asp_config = strategy_c.get("ASPPrune", None) transformer_prune_config = strategy_c.get("TransformerPrune", None) unstructure_prune_config = strategy_c.get("UnstructurePrune", None) single_teacher_distill_config = strategy_c.get("Distillation", None) if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None: single_teacher_distill_config.teacher_model_dir = self.model_dir single_teacher_distill_config.teacher_model_filename = self.model_filename single_teacher_distill_config.teacher_params_filename = self.params_filename multi_teacher_distill_config = strategy_c.get( "MultiTeacherDistillation", None) assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \ "Distillation and MultiTeacherDistillation cannot be set at the same time." self._distill_config = single_teacher_distill_config if \ single_teacher_distill_config is not None else \ multi_teacher_distill_config only_distillation = True ### case1: prune_config & distill config if prune_config is not None and self._distill_config is not None: only_distillation = False strategy.append('channel_prune_dis') config.append(merge_config(prune_config, self._distill_config)) ### case2: asp_config & distill config if asp_config is not None and self._distill_config is not None: only_distillation = False strategy.append('asp_prune_dis') config.append(merge_config(asp_config, self._distill_config)) ### case3: transformer_prune_config & distill config if transformer_prune_config is not None and self._distill_config is not None: only_distillation = False strategy.append('transformer_prune_dis') config.append( merge_config(transformer_prune_config, self._distill_config)) ### case4: unstructure_config & distill config if unstructure_prune_config is not None and self._distill_config is not None: only_distillation = False strategy.append('unstructure_prune_dis') config.append( merge_config(unstructure_prune_config, self._distill_config)) ### case5: quant_config & hpo_config ==> PTQ & HPO if quant_config is not None and hpo_config is not None: only_distillation = False strategy.append('ptq_hpo') config.append(merge_config(quant_config, hpo_config)) ### case6: quant_config & distill config ==> QAT & Distill if quant_config is not None and self._distill_config is not None and 'ptq_hpo' not in strategy: only_distillation = False strategy.append('qat_dis') config.append(merge_config(quant_config, self._distill_config)) ### case7: distill_config if only_distillation == True and self._distill_config is not None: if single_teacher_distill_config is not None: strategy.append('single_teacher_dis') config.append(single_teacher_distill_config) else: strategy.append('multi_teacher_dis') config.append(multi_teacher_distill_config) ### NOTE: keep quantation in the last step idx = -1 if 'qat_dis' in strategy and strategy.index('qat_dis') != ( len(strategy) - 1): idx = strategy.index('qat_dis') elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != ( len(strategy) - 1): idx = strategy.index('ptq_hpo') if idx != -1: strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]] config = config[:idx] + config[idx + 1:] + [config[idx]] return strategy, config def _prepare_fleet_strategy(train_config): build_strategy = paddle.static.BuildStrategy() exec_strategy = paddle.static.ExecutionStrategy() strategy = fleet.DistributedStrategy() strategy.build_strategy = build_strategy if train_config.recompute_config is not None: strategy.recompute = True strategy.recompute_configs = { ** train_config.recompute_config} if train_config.sharding_config is not None: strategy.sharding = True strategy.sharding_configs = { ** train_config.sharding_config} if train_config.amp_config is not None: strategy.amp = True strategy.amp_configs = { ** train_config.amp_config} if train_config.asp_config is not None: strategy.asp = True return strategy def _prepare_program(self, program, feed_target_names, fetch_targets, patterns, default_distill_node_pair, strategy, config, train_config): train_program = recover_inference_program(program) startup_program = paddle.static.Program() train_program_info = ProgramInfo(startup_program, train_program, feed_target_names, fetch_targets) config_dict = config.__dict__ if "prune_strategy" in config_dict and config_dict[ "prune_strategy"] == "gmp" and config_dict[ 'gmp_config'] is None: _logger.info( "Calculating the iterations per epoch……(It will take some time)") # NOTE:XXX: This way of calculating the iters needs to be improved. if train_config.epochs: iters_per_epoch = len(list(self.train_dataloader())) total_iters = train_config.epochs * iters_per_epoch elif train_config.train_iter: total_iters = train_config.train_iter else: raise RuntimeError( 'train_config must has `epochs` or `train_iter` field.') config_dict['gmp_config'] = { 'stable_iterations': 0, 'pruning_iterations': max(0.45 * total_iters, 30), 'tunning_iterations': max(0.45 * total_iters, 30), 'resume_iteration': -1, 'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1, 'initial_ratio': 0.15, } ### add prune program self._pruner = None if 'prune' in strategy: self._pruner, train_program_info = build_prune_program( self._exe, self._places, config_dict, train_program_info, strategy, patterns, self.eval_dataloader) if train_config.use_fleet: dist_strategy = _prepare_fleet_strategy(train_config) else: dist_strategy = None ### add distill program if 'dis' in strategy: train_program_info, test_program_info = build_distill_program( self._exe, self._places, config_dict, train_config.__dict__, train_program_info, pruner=self._pruner, dist_strategy=dist_strategy, default_distill_node_pair=default_distill_node_pair) self._quant_config = None ### add quant_aware program, quant always is last step if 'qat' in strategy: train_program_info, test_program_info, self._quant_config = build_quant_program( self._exe, self._places, config_dict, train_program_info, test_program_info) if train_config.sparse_model: from ..prune.unstructured_pruner import UnstructuredPruner # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function self._pruner = UnstructuredPruner( train_program_info.program, mode='ratio', ratio=0.75, prune_params_type='conv1x1_only', place=self._places) self._pruner.set_static_masks() # Fixed model sparsity self._exe.run(train_program_info.startup_program) if (not train_config.use_fleet) and train_config.amp_config is not None: if hasattr( train_config.amp_config, 'use_pure_fp16') and train_config.amp_config.use_pure_fp16: train_program_info.optimizer.amp_init( self._places, scope=paddle.static.global_scope()) if 'asp' in strategy: ### prune weight in scope self._pruner.prune_model(train_program_info.program) if not train_config.use_fleet: train_program_info = self._compiled_program(train_program_info, strategy) test_program_info = self._compiled_program(test_program_info, self._strategy) return train_program_info, test_program_info def _compiled_program(self, program_info, strategy): compiled_prog = paddle.static.CompiledProgram(program_info.program) build_strategy = paddle.static.BuildStrategy() exec_strategy = paddle.static.ExecutionStrategy() if 'qat' in strategy: build_strategy.memory_optimize = False build_strategy.enable_inplace = False build_strategy.fuse_all_reduce_ops = False build_strategy.sync_batch_norm = False compiled_prog = compiled_prog.with_data_parallel( loss_name=program_info.fetch_targets[0].name, build_strategy=build_strategy, exec_strategy=exec_strategy) program_info.program = compiled_prog return program_info def create_tmp_dir(self, base_dir, prefix="tmp"): # create a new temp directory in final dir s_datetime = strftime("%Y_%m_%d_%H_%M", gmtime()) tmp_base_name = "_".join([prefix, str(os.getppid()), s_datetime]) tmp_dir = os.path.join(base_dir, tmp_base_name) if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) return tmp_dir def compress(self): assert len(self._strategy) > 0 self.tmp_dir = self.create_tmp_dir(self.final_dir) strategy = None config = None train_config = None strategy_idx = None for strategy_idx, ( strategy, config, train_config ) in enumerate(zip(self._strategy, self._config, self.train_config)): self.single_strategy_compress(strategy, config, strategy_idx, train_config) if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system( ).lower() == 'linux': ptq_loss = post_quant_hpo.g_min_emd_loss final_quant_config = get_final_quant_config(ptq_loss, self.model_type) if final_quant_config is not None: quant_strategy, quant_config = self._prepare_strategy( final_quant_config) self.single_strategy_compress(quant_strategy[0], quant_config[0], strategy_idx, train_config) if paddle.distributed.get_rank() == 0: tmp_model_path = os.path.join( self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))) final_model_path = os.path.join(self.final_dir) for _file in os.listdir(tmp_model_path): _file_path = os.path.join(tmp_model_path, _file) if os.path.isfile(_file_path): shutil.copy(_file_path, final_model_path) shutil.rmtree(self.tmp_dir) _logger.info( "==> The ACT compression has been completed and the final model is saved in `{}`". format(final_model_path)) def single_strategy_compress(self, strategy, config, strategy_idx, train_config): # start compress, including train/eval model # TODO: add the emd loss of evaluation model. if strategy_idx == 0: model_dir = self.model_dir else: model_dir = os.path.join(self.tmp_dir, 'strategy_{}'.format(str(strategy_idx))) if self.updated_model_dir != model_dir: # If model is ONNX, convert it to inference model firstly. load_inference_model( model_dir, model_filename=self.model_filename, params_filename=self.params_filename, executor=self._exe) if strategy == 'quant_post': quant_post( self._exe, model_dir=model_dir, quantize_model_path=os.path.join( self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))), data_loader=self.train_dataloader, model_filename=self.model_filename, params_filename=self.params_filename, save_model_filename=self.model_filename, save_params_filename=self.params_filename, batch_size=1, batch_nums=config.batch_num, algo=config.ptq_algo, round_type='round', bias_correct=config.bias_correct, hist_percent=config.hist_percent, quantizable_op_type=config.quantize_op_types, is_full_quantize=config.is_full_quantize, weight_bits=config.weight_bits, activation_bits=config.activation_bits, activation_quantize_type='range_abs_max', weight_quantize_type=config.weight_quantize_type, onnx_format=False) elif strategy == 'ptq_hpo': if platform.system().lower() != 'linux': raise NotImplementedError( "post-quant-hpo is not support in system other than linux") if self.updated_model_dir != model_dir: # If model is ONNX, convert it to inference model firstly. load_inference_model( model_dir, model_filename=self.model_filename, params_filename=self.params_filename, executor=self._exe) if self.eval_function is None: # If eval function is None, ptq_hpo will use emd distance to eval the quantized model, so need the dataloader without label eval_dataloader = self.train_dataloader else: eval_dataloader = self.eval_dataloader post_quant_hpo.quant_post_hpo( self._exe, self._places, model_dir=model_dir, quantize_model_path=os.path.join( self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))), train_dataloader=self.train_dataloader, eval_dataloader=eval_dataloader, eval_function=self.eval_function, model_filename=self.model_filename, params_filename=self.params_filename, save_model_filename=self.model_filename, save_params_filename=self.params_filename, quantizable_op_type=config.quantize_op_types, weight_bits=config.weight_bits, activation_bits=config.activation_bits, weight_quantize_type=config.weight_quantize_type, is_full_quantize=config.is_full_quantize, algo=config.ptq_algo, bias_correct=config.bias_correct, hist_percent=config.hist_percent, batch_size=[1], batch_num=config.batch_num, onnx_format=config.onnx_format, runcount_limit=config.max_quant_count) else: assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss." [inference_program, feed_target_names, fetch_targets]= load_inference_model( \ model_dir, \ model_filename=self.model_filename, params_filename=self.params_filename, executor=self._exe) ### used to check whether the dataloader is right self.metric_before_compressed = None if self.eval_function is not None and train_config.origin_metric is not None: _logger.info("start to test metric before compress") metric = self.eval_function(self._exe, inference_program, feed_target_names, fetch_targets) _logger.info("metric of compressed model is: {}".format(metric)) buf = 0.05 if metric < (float(train_config.origin_metric) - buf) or \ metric > (float(train_config.origin_metric) + buf): raise RuntimeError("target metric of pretrained model is {}, \ but now is {}, Please check the format of evaluation dataset \ or check the origin_metric in train_config" .format(\ train_config.origin_metric, metric)) self.metric_before_compressed = metric patterns, default_distill_node_pair, _ = get_patterns( inference_program) train_program_info, test_program_info = self._prepare_program( inference_program, feed_target_names, fetch_targets, patterns, default_distill_node_pair, strategy, config, train_config) if 'unstructure' in self._strategy: test_program_info.program._program = remove_unused_var_nodes( test_program_info.program._program) test_program_info = self._start_train( train_program_info, test_program_info, strategy, train_config) if paddle.distributed.get_rank() == 0: self._save_model(test_program_info, strategy, strategy_idx) def _start_train(self, train_program_info, test_program_info, strategy, train_config): best_metric = -1.0 total_epochs = train_config.epochs if train_config.epochs else 100 total_train_iter = 0 stop_training = False for epoch_id in range(total_epochs): if stop_training: break for batch_id, data in enumerate(self.train_dataloader()): np_probs_float, = self._exe.run(train_program_info.program, \ feed=data, \ fetch_list=train_program_info.fetch_targets) if not isinstance(train_program_info.learning_rate, float): train_program_info.learning_rate.step() if 'unstructure' in strategy: self._pruner.step() if train_config.logging_iter is None: logging_iter = 10 else: logging_iter = train_config.logging_iter if batch_id % int(logging_iter) == 0: _logger.info( "Total iter: {}, epoch: {}, batch: {}, loss: {}".format( total_train_iter, epoch_id, batch_id, np_probs_float)) total_train_iter += 1 if total_train_iter % int( train_config.eval_iter) == 0 and total_train_iter != 0: if self.eval_function is not None: # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. if 'unstructure' in strategy: self._pruner.update_params() metric = self.eval_function( self._exe, test_program_info.program, test_program_info.feed_target_names, test_program_info.fetch_targets) if metric > best_metric: paddle.static.save( program=test_program_info.program._program, model_path=os.path.join(self.tmp_dir, 'best_model')) best_metric = metric _logger.info( "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}". format(epoch_id, metric, best_metric)) if self.metric_before_compressed is not None and float( abs(best_metric - self.metric_before_compressed) ) / self.metric_before_compressed <= 0.005: _logger.info( "The error rate between the compressed model and original model is less than 5%. The training process ends." ) stop_training = True break else: _logger.info( "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}". format(epoch_id, metric, best_metric)) if train_config.target_metric is not None: if metric > float(train_config.target_metric): stop_training = True _logger.info( "The metric of compressed model has reached the target metric. The training process ends." ) break else: _logger.warning( "Not set eval function, so unable to test accuracy performance." ) if (train_config.train_iter and total_train_iter >= train_config.train_iter) or stop_training: break if 'unstructure' in self._strategy or train_config.sparse_model: self._pruner.update_params() return test_program_info def _save_model(self, test_program_info, strategy, strategy_idx): test_program = test_program_info.program._program if isinstance( test_program_info.program, paddle.static.CompiledProgram) else test_program_info.program if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')): paddle.static.load(test_program, os.path.join(self.tmp_dir, 'best_model')) os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel')) os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt')) os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams')) model_dir = os.path.join(self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))) if not os.path.exists(model_dir): os.makedirs(model_dir) if 'qat' in strategy: test_program = convert( test_program, self._places, self._quant_config, scope=paddle.static.global_scope(), save_clip_ranges_path=self.final_dir) feed_vars = [ test_program.global_block().var(name) for name in test_program_info.feed_target_names ] model_name = None if self.model_filename is None: model_name = "model" elif self.model_filename.endswith(".pdmodel"): model_name = self.model_filename.rsplit(".", 1)[0] else: model_name = self.model_filename path_prefix = os.path.join(model_dir, model_name) paddle.static.save_inference_model( path_prefix=path_prefix, feed_vars=feed_vars, fetch_vars=test_program_info.fetch_targets, executor=self._exe, program=test_program, clip_extra=False) def export_onnx(self, model_name='quant_model.onnx', deploy_backend='tensorrt'): if paddle.distributed.get_rank() == 0: infer_model_path = os.path.join(self.final_dir, self.model_filename) assert os.path.exists( infer_model_path), 'Not found {}, please check it.'.format( infer_model_path) onnx_save_path = os.path.join(self.final_dir, 'ONNX') if not os.path.exists(onnx_save_path): os.makedirs(onnx_save_path) export_onnx( self.final_dir, model_filename=self.model_filename, params_filename=self.params_filename, save_file_path=os.path.join(onnx_save_path, model_name), deploy_backend=deploy_backend)