# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle import paddle.nn as nn from paddle.vision.models import mobilenet_v1 from paddleslim.nas.ofa.convert_super import Convert, supernet class TestConvertSuper(unittest.TestCase): def setUp(self): self.model = mobilenet_v1() def test_convert(self): sp_net_config = supernet(kernel_size=(3, 5, 7), expand_ratio=[1, 2, 4]) sp_model = Convert(sp_net_config).convert(self.model) assert len(sp_model.sublayers()) == 151 class TestConvertSuperCase1(unittest.TestCase): def setUp(self): class Model(nn.Layer): def __init__(self): super(Model, self).__init__() self.fc = nn.Linear( 5, 10, weight_attr=paddle.ParamAttr( initializer=nn.initializer.XavierNormal()), bias_attr=paddle.ParamAttr( initializer=nn.initializer.Constant(value=0.0))) def forward(self, inputs): return self.fc(inputs) self.model = Model() def test_convert(self): sp_net_config = supernet(expand_ratio=[1, 2, 4]) sp_model = Convert(sp_net_config).convert(self.model) if __name__ == '__main__': unittest.main()