# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import random import time import json from functools import partial import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddlenlp.transformers import BertModel, BertForSequenceClassification, BertTokenizer from paddlenlp.utils.log import logger from paddleslim.nas.ofa import OFA, utils from paddleslim.nas.ofa.convert_super import Convert, supernet from paddleslim.nas.ofa.layers import BaseBlock MODEL_CLASSES = {"bert": (BertForSequenceClassification, BertTokenizer), } def parse_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) parser.add_argument( "--sub_model_output_dir", default=None, type=str, required=True, help="The output directory where the sub model predictions and checkpoints will be written.", ) parser.add_argument( "--static_sub_model", default=None, type=str, help="The output directory where the sub static model will be written. If set to None, not export static model", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--n_gpu", type=int, default=1, help="number of gpus to use, 0 for cpu.") parser.add_argument( '--width_mult', type=float, default=1.0, help="width mult you want to export") args = parser.parse_args() return args def export_static_model(model, model_path, max_seq_length): input_shape = [ paddle.static.InputSpec( shape=[None, max_seq_length], dtype='int64'), paddle.static.InputSpec( shape=[None, max_seq_length], dtype='int64') ] net = paddle.jit.to_static(model, input_spec=input_shape) paddle.jit.save(net, model_path) def do_train(args): paddle.set_device("gpu" if args.n_gpu else "cpu") args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config_path = os.path.join(args.model_name_or_path, 'model_config.json') cfg_dict = dict(json.loads(open(config_path).read())) num_labels = cfg_dict['num_classes'] model = model_class.from_pretrained( args.model_name_or_path, num_classes=num_labels) origin_model = model_class.from_pretrained( args.model_name_or_path, num_classes=num_labels) sp_config = supernet(expand_ratio=[1.0, args.width_mult]) model = Convert(sp_config).convert(model) ofa_model = OFA(model) sd = paddle.load( os.path.join(args.model_name_or_path, 'model_state.pdparams')) ofa_model.model.set_state_dict(sd) best_config = utils.dynabert_config(ofa_model, args.width_mult) ofa_model.export( best_config, input_shapes=[[1, args.max_seq_length], [1, args.max_seq_length]], input_dtypes=['int64', 'int64'], origin_model=origin_model) for name, sublayer in origin_model.named_sublayers(): if isinstance(sublayer, paddle.nn.MultiHeadAttention): sublayer.num_heads = int(args.width_mult * sublayer.num_heads) output_dir = os.path.join(args.sub_model_output_dir, "model_width_%.5f" % args.width_mult) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = origin_model model_to_save.save_pretrained(output_dir) if args.static_sub_model != None: export_static_model(origin_model, args.static_sub_model, args.max_seq_length) def print_arguments(args): """print arguments""" print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": args = parse_args() print_arguments(args) do_train(args)