# Model Zoo ## 1. 图象分类 数据集:ImageNet1000类 ### 1.1 量化 | 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 | |:--:|:---:|:--:|:--:|:--:| |MobileNetV1|-|70.99%/89.68%| xx | [下载链接]() | |MobileNetV1|quant_post|xx%/xx%| xx | [下载链接]() | |MobileNetV1|quant_aware|xx%/xx%| xx | [下载链接]() | | MobileNetV2 | - |72.15%/90.65%| xx | [下载链接]() | | MobileNetV2 | quant_post |xx%/xx%| xx | [下载链接]() | | MobileNetV2 | quant_aware |xx%/xx%| xx | [下载链接]() | |ResNet50|-|76.50%/93.00%| xx | [下载链接]() | |ResNet50|quant_post|xx%/xx%| xx | [下载链接]() | |ResNet50|quant_aware|xx%/xx%| xx | [下载链接]() | ### 1.2 剪裁 | 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs | 下载 | |:--:|:---:|:--:|:--:|:--:|:--:| | MobileNetV1 | Baseline | 70.99%/89.68% | 17 | 1.11 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | | MobileNetV1 | uniform -50% | 69.4%/88.66% (-1.59%/-1.02%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) | | MobileNetV1 | sensitive -30% | 70.4%/89.3% (-0.59%/-0.38%) | 12 | 0.74 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) | | MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) | | MobileNetV2 | - | 72.15%/90.65% | 15 | 0.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | | MobileNetV2 | uniform -50% | 65.79%/86.11% (-6.35%/-4.47%) | 11 | 0.296 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) | | ResNet34 | - | 72.15%/90.65% | 84 | 7.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) | | ResNet34 | uniform -50% | 70.99%/89.95% (-1.36%/-0.87%) | 41 | 3.67 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) | | ResNet34 | auto -55.05% | 70.24%/89.63% (-2.04%/-1.06%) | 33 | 3.31 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) | ### 1.3 蒸馏 | 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 | |:--:|:---:|:--:|:--:|:--:| | MobileNetV1 | student | 70.99%/89.68% | 17 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) | |ResNet50_vd|teacher|79.12%/94.44%| 99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | |MobileNetV1|ResNet50_vd[1](#trans1) distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) | | MobileNetV2 | student | 72.15%/90.65% | 15 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | | MobileNetV2 | ResNet50_vd distill | 74.28%/91.53% (+2.13%/+0.88%) | 15 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) | | ResNet50 | student | 76.50%/93.00% | 99 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) | |ResNet101|teacher|77.56%/93.64%| 173 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) | | ResNet50 | ResNet101 distill | 77.29%/93.65% (+0.79%/+0.65%) | 99 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) | !!! note "Note" [1]:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412) ## 2. 目标检测 ### 2.1 量化 数据集: COCO 2017 | 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | 下载 | | :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: | | MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | xx | [下载链接]() | | MobileNet-V1-YOLOv3 | quant_post | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | MobileNet-V1-YOLOv3 | quant_aware | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | xx | xx | xx | [下载链接]() | | R50-dcn-YOLOv3 obj365_pretrain | quant_post | COCO | 8 | xx | xx | xx | xx | [下载链接]() | | R50-dcn-YOLOv3 obj365_pretrain | quant_aware | COCO | 8 | xx | xx | xx | xx | [下载链接]() | 数据集:WIDER-FACE | 模型 | 压缩方法 | Image/GPU | 输入尺寸 | Easy/Medium/Hard | 模型体积(MB) | 下载 | | :------------: | :---------: | :-------: | :------: | :---------------: | :------------: | :----------: | | BlazeFace | - | 8 | 640 | 0.915/0.892/0.797 | xx | [下载链接]() | | BlazeFace | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-Lite | - | 8 | 640 | 0.909/0.885/0.781 | xx | [下载链接]() | | BlazeFace-Lite | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-Lite | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-NAS | - | 8 | 640 | 0.837/0.807/0.658 | xx | [下载链接]() | | BlazeFace-NAS | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() | | BlazeFace-NAS | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() | ### 2.2 剪裁 数据集:Pasacl VOC & COCO 2017 | 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608*608) | 下载 | | :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :----------------------------------------------------------: | | MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | | MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) | | MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) | | R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) | | R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) | | R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) | | R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) | | R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) | | R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) | ### 2.3 蒸馏 数据集:Pasacl VOC & COCO 2017 | 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | 下载 | | :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------------------------------------------------------: | | MobileNet-V1-YOLOv3 | - | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | | ResNet34-YOLOv3 | - | Pascal VOC | 8 | 82.6 | 81.9 | 80.1 | 162 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | | MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC | 8 | 79.0 (+2.8) | 78.2 (+1.5) | 75.5 (+0.2) | 94 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) | | MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | ResNet34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 163 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | | MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | COCO | 8 | 31.4 (+2.1) | 30.0 (+0.7) | 27.1 (+0.1) | 95 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) | ## 3. 图像分割 数据集:Cityscapes ### 3.1 量化 | 模型 | 压缩方法 | mIoU | 模型体积(MB) | 下载 | | :--------------------: | :---------: | :---: | :------------: | :----------: | | DeepLabv3+/MobileNetv1 | - | 63.26 | xx | [下载链接]() | | DeepLabv3+/MobileNetv1 | quant_post | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv1 | quant_aware | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv2 | - | 69.81 | xx | [下载链接]() | | DeepLabv3+/MobileNetv2 | quant_post | xx | xx | [下载链接]() | | DeepLabv3+/MobileNetv2 | quant_aware | xx | xx | [下载链接]() | ### 3.2 剪裁 | 模型 | 压缩方法 | mIoU | 模型体积(MB) | GFLOPs | 下载 | | :-------: | :---------------: | :-----------: | :------------: | :----: | :----------------------------------------------------------: | | fast-scnn | baseline | 69.64 | 11 | 14.41 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) | | fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) | | fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |