#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import numpy as np import argparse import functools import paddle sys.path[0] = os.path.join( os.path.dirname("__file__"), os.path.pardir, os.path.pardir) sys.path[1] = os.path.join(os.path.dirname("__file__"), os.path.pardir) import imagenet_reader as reader from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('model_path', str, "./pruning/checkpoints/resnet50/2/eval_model/", "Whether to use pretrained model.") add_arg('model_name', str, 'model.pdmodel', "model filename for inference model") add_arg('params_name', str, 'model.pdiparams', "params filename for inference model") add_arg('batch_size', int, 64, "Minibatch size.") # yapf: enable def eval(args): place = paddle.CUDAPlace(0) if args.use_gpu else paddle.CPUPlace() exe = paddle.static.Executor(place) val_program, feed_target_names, fetch_targets = paddle.fluid.io.load_inference_model( args.model_path, exe, model_filename=args.model_name, params_filename=args.params_name) val_dataset = reader.ImageNetDataset(mode='val') image = paddle.static.data( name='image', shape=[None, 3, 224, 224], dtype='float32') label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') val_loader = paddle.io.DataLoader( val_dataset, places=place, feed_list=[image, label], drop_last=False, return_list=True, batch_size=args.batch_size, use_shared_memory=True, shuffle=False) results = [] for batch_id, data in enumerate(val_loader()): # top1_acc, top5_acc if len(feed_target_names) == 1: # eval "infer model", which input is image, output is classification probability image = data[0] label = data[1] pred = exe.run(val_program, feed={feed_target_names[0]: image}, fetch_list=fetch_targets) pred = np.array(pred[0]) label = np.array(label) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = float(acc_num) / len(label) results.append([top_1, top_5]) else: # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy image = data[0] label = data[1] result = exe.run(val_program, feed={ feed_target_names[0]: image, feed_target_names[1]: label }, fetch_list=fetch_targets) result = [np.mean(r) for r in result] results.append(result) if batch_id % 100 == 0: print('Eval iter: ', batch_id) result = np.mean(np.array(results), axis=0) print("top1_acc/top5_acc= {}".format(result)) sys.stdout.flush() def main(): paddle.enable_static() args = parser.parse_args() print_arguments(args) eval(args) if __name__ == '__main__': main()