# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import numpy as np import argparse import time from paddle.inference import Config from paddle.inference import create_predictor from post_process import YOLOv5PostProcess CLASS_LABEL = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] def generate_scale(im, target_shape, keep_ratio=True): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] if keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(target_shape) target_size_max = np.max(target_shape) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = target_shape im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x def image_preprocess(img_path, target_shape): img = cv2.imread(img_path) # Resize im_scale_y, im_scale_x = generate_scale(img, target_shape) img = cv2.resize( img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_LINEAR) # Pad im_h, im_w = img.shape[:2] h, w = target_shape[:] if h != im_h or w != im_w: canvas = np.ones((h, w, 3), dtype=np.float32) canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32) canvas[0:im_h, 0:im_w, :] = img.astype(np.float32) img = canvas img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.transpose(img, [2, 0, 1]) / 255 img = np.expand_dims(img, 0) scale_factor = np.array([[im_scale_y, im_scale_x]]) return img.astype(np.float32), scale_factor def get_color_map_list(num_classes): color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def draw_box(image_file, results, class_label, threshold=0.5): srcimg = cv2.imread(image_file, 1) for i in range(len(results)): color_list = get_color_map_list(len(class_label)) clsid2color = {} classid, conf = int(results[i, 0]), results[i, 1] if conf < threshold: continue xmin, ymin, xmax, ymax = int(results[i, 2]), int(results[i, 3]), int( results[i, 4]), int(results[i, 5]) if classid not in clsid2color: clsid2color[classid] = color_list[classid] color = tuple(clsid2color[classid]) cv2.rectangle(srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2) print(class_label[classid] + ': ' + str(round(conf, 3))) cv2.putText( srcimg, class_label[classid] + ':' + str(round(conf, 3)), (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), thickness=2) return srcimg def load_predictor(model_dir, run_mode='paddle', batch_size=1, device='CPU', min_subgraph_size=3, use_dynamic_shape=False, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False, enable_mkldnn_bfloat16=False, delete_shuffle_pass=False): """set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8) use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. Used by action model. Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need device == 'GPU'. """ if device != 'GPU' and run_mode != 'paddle': raise ValueError( "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}" .format(run_mode, device)) config = Config( os.path.join(model_dir, 'model.pdmodel'), os.path.join(model_dir, 'model.pdiparams')) if device == 'GPU': # initial GPU memory(M), device ID config.enable_use_gpu(200, 0) # optimize graph and fuse op config.switch_ir_optim(True) elif device == 'XPU': config.enable_lite_engine() config.enable_xpu(10 * 1024 * 1024) else: config.disable_gpu() config.set_cpu_math_library_num_threads(cpu_threads) if enable_mkldnn: try: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() if enable_mkldnn_bfloat16: config.enable_mkldnn_bfloat16() except Exception as e: print( "The current environment does not support `mkldnn`, so disable mkldnn." ) pass precision_map = { 'trt_int8': Config.Precision.Int8, 'trt_fp32': Config.Precision.Float32, 'trt_fp16': Config.Precision.Half } if run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=(1 << 25) * batch_size, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[run_mode], use_static=False, use_calib_mode=trt_calib_mode) if use_dynamic_shape: min_input_shape = { 'image': [batch_size, 3, trt_min_shape, trt_min_shape] } max_input_shape = { 'image': [batch_size, 3, trt_max_shape, trt_max_shape] } opt_input_shape = { 'image': [batch_size, 3, trt_opt_shape, trt_opt_shape] } config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, opt_input_shape) print('trt set dynamic shape done!') # disable print log when predict config.disable_glog_info() # enable shared memory config.enable_memory_optim() # disable feed, fetch OP, needed by zero_copy_run config.switch_use_feed_fetch_ops(False) if delete_shuffle_pass: config.delete_pass("shuffle_channel_detect_pass") predictor = create_predictor(config) return predictor def predict_image(predictor, image_file, image_shape=[640, 640], warmup=1, repeats=1, threshold=0.5, arch='YOLOv5'): img, scale_factor = image_preprocess(image_file, image_shape) inputs = {} if arch == 'YOLOv5': inputs['x2paddle_images'] = img input_names = predictor.get_input_names() for i in range(len(input_names)): input_tensor = predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) for i in range(warmup): predictor.run() np_boxes = None predict_time = 0. time_min = float("inf") time_max = float('-inf') for i in range(repeats): start_time = time.time() predictor.run() output_names = predictor.get_output_names() boxes_tensor = predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() end_time = time.time() timed = end_time - start_time time_min = min(time_min, timed) time_max = max(time_max, timed) predict_time += timed time_avg = predict_time / repeats print('Inference time(ms): min={}, max={}, avg={}'.format( round(time_min * 1000, 2), round(time_max * 1000, 1), round(time_avg * 1000, 1))) postprocess = YOLOv5PostProcess( score_threshold=0.001, nms_threshold=0.6, multi_label=True) res = postprocess(np_boxes, scale_factor) res_img = draw_box( image_file, res['bbox'], CLASS_LABEL, threshold=threshold) cv2.imwrite('result.jpg', res_img) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--image_file', type=str, default=None, help="image path") parser.add_argument( '--model_path', type=str, help="inference model filepath") parser.add_argument( '--benchmark', type=bool, default=False, help="Whether run benchmark or not.") parser.add_argument( '--run_mode', type=str, default='paddle', help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)") parser.add_argument( '--device', type=str, default='CPU', help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU" ) parser.add_argument('--img_shape', type=int, default=640, help="input_size") args = parser.parse_args() predictor = load_predictor( args.model_path, run_mode=args.run_mode, device=args.device) warmup, repeats = 1, 1 if args.benchmark: warmup, repeats = 50, 100 predict_image( predictor, args.image_file, image_shape=[args.img_shape, args.img_shape], warmup=warmup, repeats=repeats)