# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import ast import argparse import functools import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable import reader from model_search import Network from paddleslim.nas.darts import DARTSearch sys.path[0] = os.path.join(os.path.dirname("__file__"), os.path.pardir) from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('log_freq', int, 50, "Log frequency.") add_arg('use_multiprocess', bool, True, "Whether use multiprocess reader.") add_arg('batch_size', int, 64, "Minibatch size.") add_arg('learning_rate', float, 0.025, "The start learning rate.") add_arg('momentum', float, 0.9, "Momentum.") add_arg('use_gpu', bool, True, "Whether use GPU.") add_arg('epochs', int, 50, "Epoch number.") add_arg('init_channels', int, 16, "Init channel number.") add_arg('layers', int, 8, "Total number of layers.") add_arg('class_num', int, 10, "Class number of dataset.") add_arg('trainset_num', int, 50000, "images number of trainset.") add_arg('model_save_dir', str, 'search_cifar', "The path to save model.") add_arg('grad_clip', float, 5, "Gradient clipping.") add_arg('arch_learning_rate',float, 3e-4, "Learning rate for arch encoding.") add_arg('method', str, 'DARTS', "The search method you would like to use") add_arg('epochs_no_archopt', int, 0, "Epochs not optimize the arch params") add_arg('cutout_length', int, 16, "Cutout length.") add_arg('cutout', ast.literal_eval, False, "Whether use cutout.") add_arg('unrolled', ast.literal_eval, False, "Use one-step unrolled validation loss") add_arg('use_data_parallel', ast.literal_eval, False, "The flag indicating whether to use data parallel mode to train the model.") # yapf: enable def main(args): if not args.use_gpu: place = fluid.CPUPlace() elif not args.use_data_parallel: place = fluid.CUDAPlace(0) else: place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) train_reader, valid_reader = reader.train_search( batch_size=args.batch_size, train_portion=0.5, is_shuffle=True, args=args) with fluid.dygraph.guard(place): model = Network(args.init_channels, args.class_num, args.layers, args.method) searcher = DARTSearch( model, train_reader, valid_reader, place, learning_rate=args.learning_rate, batchsize=args.batch_size, num_imgs=args.trainset_num, arch_learning_rate=args.arch_learning_rate, unrolled=args.unrolled, num_epochs=args.epochs, epochs_no_archopt=args.epochs_no_archopt, use_multiprocess=args.use_multiprocess, use_data_parallel=args.use_data_parallel, save_dir=args.model_save_dir, log_freq=args.log_freq) searcher.train() if __name__ == '__main__': args = parser.parse_args() print_arguments(args) main(args)