1. 图象分类#

数据集:ImageNet1000类

1.1 量化#

模型 压缩方法 Top-1/Top-5 Acc 模型体积(MB) 下载
MobileNetV1 - 70.99%/89.68% xx 下载链接
MobileNetV1 quant_post xx%/xx% xx 下载链接
MobileNetV1 quant_aware xx%/xx% xx 下载链接
MobileNetV2 - 72.15%/90.65% xx 下载链接
MobileNetV2 quant_post xx%/xx% xx 下载链接
MobileNetV2 quant_aware xx%/xx% xx 下载链接
ResNet50 - 76.50%/93.00% xx 下载链接
ResNet50 quant_post xx%/xx% xx 下载链接
ResNet50 quant_aware xx%/xx% xx 下载链接

1.2 剪裁#

模型 压缩方法 Top-1/Top-5 Acc 模型体积(MB) GFLOPs 下载
MobileNetV1 Baseline 70.99%/89.68% 17 1.11 下载链接
MobileNetV1 uniform -50% 69.4%/88.66% (-1.59%/-1.02%) 9 0.56 下载链接
MobileNetV1 sensitive -30% 70.4%/89.3% (-0.59%/-0.38%) 12 0.74 下载链接
MobileNetV1 sensitive -50% 69.8% / 88.9% (-1.19%/-0.78%) 9 0.56 下载链接
MobileNetV2 - 72.15%/90.65% 15 0.59 下载链接
MobileNetV2 uniform -50% 65.79%/86.11%(-6.35%/-4.47%) 11 0.296 下载链接
ResNet34 - 72.15%/90.65% 84 7.36 下载链接
ResNet34 uniform -50% 70.99%/89.95%(-1.36%/-0.87%) 41 3.67 下载链接
ResNet34 auto -55.05% 70.24%/89.63%(-2.04%/-1.06%) 33 3.31 下载链接

1.3 蒸馏#

模型 压缩方法 Top-1/Top-5 Acc 模型体积(MB) 下载
MobileNetV1 student 70.99%/89.68% 17 下载链接
ResNet50_vd teacher 79.12%/94.44% 99 下载链接
MobileNetV1 ResNet50_vd1 distill 72.77%/90.68%(+1.78%/+1.00%) 17 下载链接
MobileNetV2 student 72.15%/90.65% 15 下载链接
MobileNetV2 ResNet50_vd distill 74.28%/91.53%(+2.13%/+0.88%) 15 下载链接
ResNet50 student 76.50%/93.00% 99 下载链接
ResNet101 teacher 77.56%/93.64% 173 下载链接
ResNet50 ResNet101 distill 77.29%/93.65%(+0.79%/+0.65%) 99 下载链接

Note

[1]:带_vd后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考mixup: Beyond Empirical Risk Minimization

2. 目标检测#

2.1 量化#

数据集: COCO 2017

模型 压缩方法 数据集 Image/GPU 输入608 Box AP 输入416 Box AP 输入320 Box AP 模型体积(MB) 下载
MobileNet-V1-YOLOv3 - COCO 8 29.3 29.3 27.1 xx 下载链接
MobileNet-V1-YOLOv3 quant_post COCO 8 xx xx xx xx 下载链接
MobileNet-V1-YOLOv3 quant_aware COCO 8 xx xx xx xx 下载链接
R50-dcn-YOLOv3 obj365_pretrain - COCO 8 41.4 xx xx xx 下载链接
R50-dcn-YOLOv3 obj365_pretrain quant_post COCO 8 xx xx xx xx 下载链接
R50-dcn-YOLOv3 obj365_pretrain quant_aware COCO 8 xx xx xx xx 下载链接

数据集:WIDER-FACE

模型 压缩方法 Image/GPU 输入尺寸 Easy/Medium/Hard 模型体积(MB) 下载
BlazeFace - 8 640 0.915/0.892/0.797 xx 下载链接
BlazeFace quant_post 8 640 xx/xx/xx xx 下载链接
BlazeFace quant_aware 8 640 xx/xx/xx xx 下载链接
BlazeFace-Lite - 8 640 0.909/0.885/0.781 xx 下载链接
BlazeFace-Lite quant_post 8 640 xx/xx/xx xx 下载链接
BlazeFace-Lite quant_aware 8 640 xx/xx/xx xx 下载链接
BlazeFace-NAS - 8 640 0.837/0.807/0.658 xx 下载链接
BlazeFace-NAS quant_post 8 640 xx/xx/xx xx 下载链接
BlazeFace-NAS quant_aware 8 640 xx/xx/xx xx 下载链接

2.2 剪裁#

数据集:Pasacl VOC & COCO 2017

模型 压缩方法 数据集 Image/GPU 输入608 Box AP 输入416 Box AP 输入320 Box AP 模型体积(MB) GFLOPs (608*608) 下载
MobileNet-V1-YOLOv3 Baseline Pascal VOC 8 76.2 76.7 75.3 94 40.49 下载链接
MobileNet-V1-YOLOv3 sensitive -52.88% Pascal VOC 8 77.6 (+1.4) 77.7 (1.0) 75.5 (+0.2) 31 19.08 下载链接
MobileNet-V1-YOLOv3 - COCO 8 29.3 29.3 27.0 95 41.35 下载链接
MobileNet-V1-YOLOv3 sensitive -51.77% COCO 8 26.0 (-3.3) 25.1 (-4.2) 22.6 (-4.4) 32 19.94 下载链接
R50-dcn-YOLOv3 - COCO 8 39.1 - - 177 89.60 下载链接
R50-dcn-YOLOv3 sensitive -9.37% COCO 8 39.3 (+0.2) - - 150 81.20 下载链接
R50-dcn-YOLOv3 sensitive -24.68% COCO 8 37.3 (-1.8) - - 113 67.48 下载链接
R50-dcn-YOLOv3 obj365_pretrain - COCO 8 41.4 - - 177 89.60 下载链接
R50-dcn-YOLOv3 obj365_pretrain sensitive -9.37% COCO 8 40.5 (-0.9) - - 150 81.20 下载链接
R50-dcn-YOLOv3 obj365_pretrain sensitive -24.68% COCO 8 37.8 (-3.3) - - 113 67.48 下载链接

2.3 蒸馏#

数据集:Pasacl VOC & COCO 2017

模型 压缩方法 数据集 Image/GPU 输入608 Box AP 输入416 Box AP 输入320 Box AP 模型体积(MB) 下载
MobileNet-V1-YOLOv3 - Pascal VOC 8 76.2 76.7 75.3 94 下载链接
ResNet34-YOLOv3 - Pascal VOC 8 82.6 81.9 80.1 162 下载链接
MobileNet-V1-YOLOv3 ResNet34-YOLOv3 distill Pascal VOC 8 79.0 (+2.8) 78.2 (+1.5) 75.5 (+0.2) 94 下载链接
MobileNet-V1-YOLOv3 - COCO 8 29.3 29.3 27.0 95 下载链接
ResNet34-YOLOv3 - COCO 8 36.2 34.3 31.4 163 下载链接
MobileNet-V1-YOLOv3 ResNet34-YOLOv3 distill COCO 8 31.4 (+2.1) 30.0 (+0.7) 27.1 (+0.1) 95 下载链接

3. 图像分割#

数据集:Cityscapes

3.1 量化#

模型 压缩方法 mIoU 模型体积(MB) 下载
DeepLabv3+/MobileNetv1 - 63.26 xx 下载链接
DeepLabv3+/MobileNetv1 quant_post xx xx 下载链接
DeepLabv3+/MobileNetv1 quant_aware xx xx 下载链接
DeepLabv3+/MobileNetv2 - 69.81 xx 下载链接
DeepLabv3+/MobileNetv2 quant_post xx xx 下载链接
DeepLabv3+/MobileNetv2 quant_aware xx xx 下载链接

3.2 剪裁#

模型 压缩方法 mIoU 模型体积(MB) GFLOPs 下载
fast-scnn baseline 69.64 11 14.41 下载链接
fast-scnn uniform -17.07% 69.58 (-0.06) 8.5 11.95 下载链接
fast-scnn sensitive -47.60% 66.68 (-2.96) 5.7 7.55 下载链接