# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import argparse import paddle from ppdet.core.workspace import load_config, merge_config from ppdet.core.workspace import create from ppdet.metrics import COCOMetric, VOCMetric from paddleslim.auto_compression.config_helpers import load_config as load_slim_config from paddleslim.quant import quant_post_static from paddleslim.common import load_onnx_model def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--save_dir', type=str, default='ptq_out', help="directory to save compressed model.") parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") parser.add_argument( '--algo', type=str, default='KL', help="post quant algo.") return parser def reader_wrapper(reader, input_list): def gen(): for data in reader: in_dict = {} if isinstance(input_list, list): for input_name in input_list: in_dict[input_name] = data[input_name] elif isinstance(input_list, dict): for input_name in input_list.keys(): in_dict[input_list[input_name]] = data[input_name] yield in_dict return gen def main(): global global_config all_config = load_slim_config(FLAGS.config_path) assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}" global_config = all_config["Global"] reader_cfg = load_config(global_config['reader_config']) train_loader = create('EvalReader')(reader_cfg['TrainDataset'], reader_cfg['worker_num'], return_list=True) train_loader = reader_wrapper(train_loader, global_config['input_list']) place = paddle.CUDAPlace(0) if FLAGS.devices == 'gpu' else paddle.CPUPlace() exe = paddle.static.Executor(place) load_onnx_model(global_config["model_dir"]) inference_model_path = global_config["model_dir"].rstrip().rstrip( '.onnx') + '_infer' quant_post_static( executor=exe, model_dir=inference_model_path, quantize_model_path=FLAGS.save_dir, data_loader=train_loader, model_filename='model.pdmodel', params_filename='model.pdiparams', batch_size=32, batch_nums=10, algo=FLAGS.algo, hist_percent=0.999, is_full_quantize=False, bias_correction=False, onnx_format=True) if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu'] paddle.set_device(FLAGS.devices) main()