# 图像分类模型知识蒸馏-快速开始 该教程以图像分类模型MobileNetV1为例,说明如何快速使用[PaddleSlim的知识蒸馏接口](https://paddlepaddle.github.io/PaddleSlim/api/single_distiller_api/)。 该示例包含以下步骤: 1. 导入依赖 2. 定义student_program和teacher_program 3. 选择特征图 4. 合并program(merge)并添加蒸馏loss 5. 模型训练 以下章节依次介绍每个步骤的内容。 ## 1. 导入依赖 PaddleSlim依赖Paddle2.0版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim: ``` import paddle import numpy as np import paddleslim as slim paddle.enable_static() ``` ## 2. 定义student_program和teacher_program 本教程在CIFAR数据集上进行知识蒸馏的训练和验证,输入图片尺寸为`[3, 32, 32]`,输出类别数为10。 选择`ResNet50`作为teacher对`MobileNet`结构的student进行蒸馏训练。 ```python model = slim.models.MobileNet() student_program = paddle.static.Program() student_startup = paddle.static.Program() with paddle.static.program_guard(student_program, student_startup): image = paddle.static.data( name='image', shape=[None, 3, 32, 32], dtype='float32') label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') gt = paddle.reshape(label, [-1, 1]) out = model.net(input=image, class_dim=10) cost = paddle.nn.functional.loss.cross_entropy(input=out, label=gt) avg_cost = paddle.mean(x=cost) acc_top1 = paddle.metric.accuracy(input=out, label=gt, k=1) acc_top5 = paddle.metric.accuracy(input=out, label=gt, k=5) ``` ```python teacher_model = slim.models.ResNet50() teacher_program = paddle.static.Program() teacher_startup = paddle.static.Program() with paddle.static.program_guard(teacher_program, teacher_startup): with paddle.utils.unique_name.guard(): image = paddle.static.data( name='image', shape=[None, 3, 32, 32], dtype='float32') predict = teacher_model.net(image, class_dim=10) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(teacher_startup) ``` ## 3. 选择特征图 我们可以用student_的list_vars方法来观察其中全部的Tensor,从中选出一个或多个变量(Tensor)来拟合teacher相应的变量。 ```python # get all student tensor student_vars = [] for v in student_program.list_vars(): student_vars.append((v.name, v.shape)) #uncomment the following lines to observe student's tensor for distillation #print("="*50+"student_model_vars"+"="*50) #print(student_vars) # get all teacher tensor teacher_vars = [] for v in teacher_program.list_vars(): teacher_vars.append((v.name, v.shape)) #uncomment the following lines to observe teacher's tensor for distillation #print("="*50+"teacher_model_vars"+"="*50) #print(teacher_vars) ``` 经过筛选我们可以看到,teacher_program中的'bn5c_branch2b.output.1.tmp_3'和student_program的'depthwise_conv2d_11.tmp_0'尺寸一致,可以组成蒸馏损失函数。 ## 4. 合并program (merge)并添加蒸馏loss merge操作将student_program和teacher_program中的所有Tensor和Op都将被添加到同一个Program中,同时为了避免两个program中有同名变量会引起命名冲突,merge也会为teacher_program中的Tensor添加一个同一的命名前缀name_prefix,其默认值是'teacher_' 为了确保teacher网络和student网络输入的数据是一样的,merge操作也会对两个program的输入数据层进行合并操作,所以需要指定一个数据层名称的映射关系data_name_map,key是teacher的输入数据名称,value是student的 ```python data_name_map = {'image': 'image'} main = slim.dist.merge(teacher_program, student_program, data_name_map, paddle.CPUPlace()) with paddle.static.program_guard(student_program, student_startup): l2_loss = slim.dist.l2_loss('teacher_bn5c_branch2b.output.1.tmp_3', 'depthwise_conv2d_11.tmp_0', student_program) loss = l2_loss + avg_cost opt = paddle.optimizer.Momentum(0.01, 0.9) opt.minimize(loss) exe.run(student_startup) ``` ## 5. 模型训练 为了快速执行该示例,我们选取简单的CIFAR数据,Paddle框架的`paddle.vision.datasets.Cifar10`包定义了CIFAR10数据的下载和读取。 代码如下: ```python import paddle.vision.transforms as T transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = paddle.vision.datasets.Cifar10( mode="train", backend="cv2", transform=transform) train_loader = paddle.io.DataLoader( train_dataset, places=paddle.CPUPlace(), feed_list=[image, label], drop_last=True, batch_size=64, return_list=False, shuffle=True) ``` ```python for idx, data in enumerate(train_loader): acc1, acc5, loss_np = exe.run(student_program, feed=data, fetch_list=[acc_top1.name, acc_top5.name, loss.name]) print("Acc1: {:.6f}, Acc5: {:.6f}, Loss: {:.6f}".format(acc1.mean(), acc5.mean(), loss_np.mean())) ```