# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle.fluid as fluid from paddleslim.prune import Pruner, save_model, load_model from layers import conv_bn_layer import numpy as np import numpy class TestSaveAndLoad(unittest.TestCase): def test_prune(self): train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") feature = fluid.layers.reshape(conv6, [-1, 128, 16]) predict = fluid.layers.fc(input=feature, size=10, act='softmax') label = fluid.data(name='label', shape=[None, 1], dtype='int64') print(label.shape) print(predict.shape) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) adam_optimizer = fluid.optimizer.AdamOptimizer(0.01) adam_optimizer.minimize(avg_cost) place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.global_scope() exe.run(startup_program, scope=scope) criterion = 'bn_scale' pruner = Pruner(criterion) main_program, _, _ = pruner.prune( train_program, scope, params=["conv4_weights"], ratios=[0.5], place=place, lazy=False, only_graph=False, param_backup=None, param_shape_backup=None) x = numpy.random.random(size=(10, 3, 16, 16)).astype('float32') label = numpy.random.random(size=(10, 1)).astype('int64') loss_data, = exe.run(train_program, feed={"image": x, "label": label}, fetch_list=[cost.name]) save_model(exe, main_program, 'model_file') pruned_program = fluid.Program() pruned_startup_program = fluid.Program() with fluid.program_guard(pruned_program, pruned_startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") pruned_test_program = pruned_program.clone(for_test=True) exe.run(pruned_startup_program) load_model(exe, pruned_program, 'model_file') load_model(exe, pruned_test_program, 'model_file') shapes = { "conv1_weights": (4, 3, 3, 3), "conv2_weights": (4, 4, 3, 3), "conv3_weights": (8, 4, 3, 3), "conv4_weights": (4, 8, 3, 3), "conv5_weights": (8, 4, 3, 3), "conv6_weights": (8, 8, 3, 3) } for param in pruned_program.global_block().all_parameters(): if "weights" in param.name: print("param: {}; param shape: {}".format(param.name, param.shape)) self.assertTrue(param.shape == shapes[param.name]) for param in pruned_test_program.global_block().all_parameters(): if "weights" in param.name: print("param: {}; param shape: {}".format(param.name, param.shape)) self.assertTrue(param.shape == shapes[param.name]) if __name__ == '__main__': unittest.main()