# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from ...common import get_logger __all__ = ['SearchSpaceBase'] _logger = get_logger(__name__, level=logging.INFO) class SearchSpaceBase(object): """Controller for Neural Architecture Search. """ def __init__(self, input_size, output_size, block_num, block_mask, *args): """init model config """ self.input_size = input_size self.output_size = output_size self.block_num = block_num self.block_mask = block_mask if self.block_mask != None: assert isinstance(self.block_mask, list), 'Block_mask must be a list.' _logger.warn( "If block_mask is NOT None, we will use block_mask as major configs!" ) self.block_num = None def init_tokens(self): """Get init tokens in search space. """ raise NotImplementedError('Abstract method.') def range_table(self): """Get range table of current search space. """ raise NotImplementedError('Abstract method.') def token2arch(self, tokens): """Create networks for training and evaluation according to tokens. Args: tokens(list): The tokens which represent a network. Return: model arch """ raise NotImplementedError('Abstract method.') def super_net(self): """This function is just used in one shot NAS strategy. Return a super graph.""" raise NotImplementedError('Abstract method.')