# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #order: standard library, third party, local library import os import time import sys import math import numpy as np import argparse import paddle import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.base import to_variable from paddle.fluid import framework class ConvBNLayer(fluid.dygraph.Layer): def __init__(self, num_channels, filter_size, num_filters, stride, padding, channels=None, num_groups=1, act='relu', use_cudnn=True, name=None): super(ConvBNLayer, self).__init__() self._conv = Conv2D( num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, act=None, use_cudnn=use_cudnn, param_attr=ParamAttr( initializer=MSRA(), name=self.full_name() + "_weights"), bias_attr=False) self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"), bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"), moving_mean_name=self.full_name() + "_bn" + '_mean', moving_variance_name=self.full_name() + "_bn" + '_variance') def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) return y class DepthwiseSeparable(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters1, num_filters2, num_groups, stride, scale, name=None): super(DepthwiseSeparable, self).__init__() self._depthwise_conv = ConvBNLayer( num_channels=num_channels, num_filters=int(num_filters1 * scale), filter_size=3, stride=stride, padding=1, num_groups=int(num_groups * scale), use_cudnn=False) self._pointwise_conv = ConvBNLayer( num_channels=int(num_filters1 * scale), filter_size=1, num_filters=int(num_filters2 * scale), stride=1, padding=0) def forward(self, inputs): y = self._depthwise_conv(inputs) y = self._pointwise_conv(y) return y class MobileNetV1(fluid.dygraph.Layer): def __init__(self, scale=1.0, class_dim=100): super(MobileNetV1, self).__init__() self.scale = scale self.dwsl = [] self.conv1 = ConvBNLayer( num_channels=3, filter_size=3, channels=3, num_filters=int(32 * scale), stride=1, padding=1) dws21 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(32 * scale), num_filters1=32, num_filters2=64, num_groups=32, stride=1, scale=scale), name="conv2_1") self.dwsl.append(dws21) dws22 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(64 * scale), num_filters1=64, num_filters2=128, num_groups=64, stride=1, scale=scale), name="conv2_2") self.dwsl.append(dws22) dws31 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(128 * scale), num_filters1=128, num_filters2=128, num_groups=128, stride=1, scale=scale), name="conv3_1") self.dwsl.append(dws31) dws32 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(128 * scale), num_filters1=128, num_filters2=256, num_groups=128, stride=2, scale=scale), name="conv3_2") self.dwsl.append(dws32) dws41 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(256 * scale), num_filters1=256, num_filters2=256, num_groups=256, stride=1, scale=scale), name="conv4_1") self.dwsl.append(dws41) dws42 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(256 * scale), num_filters1=256, num_filters2=512, num_groups=256, stride=2, scale=scale), name="conv4_2") self.dwsl.append(dws42) for i in range(5): tmp = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(512 * scale), num_filters1=512, num_filters2=512, num_groups=512, stride=1, scale=scale), name="conv5_" + str(i + 1)) self.dwsl.append(tmp) dws56 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(512 * scale), num_filters1=512, num_filters2=1024, num_groups=512, stride=2, scale=scale), name="conv5_6") self.dwsl.append(dws56) dws6 = self.add_sublayer( sublayer=DepthwiseSeparable( num_channels=int(1024 * scale), num_filters1=1024, num_filters2=1024, num_groups=1024, stride=1, scale=scale), name="conv6") self.dwsl.append(dws6) self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True) self.out = Linear( int(1024 * scale), class_dim, param_attr=ParamAttr( initializer=MSRA(), name=self.full_name() + "fc7_weights"), bias_attr=ParamAttr(name=self.full_name() + "fc7_offset")) def forward(self, inputs): y = self.conv1(inputs) for dws in self.dwsl: y = dws(y) y = self.pool2d_avg(y) y = fluid.layers.reshape(y, shape=[-1, 1024]) y = self.out(y) return y