# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import argparse import os import time import math import numpy as np import paddle import paddle.hapi as hapi from paddle.hapi.model import Input from paddle.metric.metrics import Accuracy import paddle.vision.models as models from paddleslim.dygraph.quant import QAT import imagenet_dataset as dataset def main(): model_list = [x for x in models.__dict__["__all__"]] assert FLAGS.arch in model_list, "Expected FLAGS.arch in {}, but received {}".format( model_list, FLAGS.arch) model = models.__dict__[FLAGS.arch](pretrained=True) if FLAGS.enable_quant: print("quantize model") quant_config = { 'weight_preprocess_type': None, 'activation_preprocess_type': 'PACT' if FLAGS.use_pact else None, 'weight_quantize_type': "channel_wise_abs_max", 'activation_quantize_type': 'moving_average_abs_max', 'weight_bits': 8, 'activation_bits': 8, 'window_size': 10000, 'moving_rate': 0.9, 'quantizable_layer_type': ['Conv2D', 'Linear'], } dygraph_qat = QAT(quant_config) dygraph_qat.quantize(model) model = hapi.Model(model) train_dataset = dataset.ImageNetDataset(data_dir=FLAGS.data, mode='train') val_dataset = dataset.ImageNetDataset(data_dir=FLAGS.data, mode='val') optim = paddle.optimizer.SGD(learning_rate=FLAGS.lr, parameters=model.parameters(), weight_decay=FLAGS.weight_decay) model.prepare(optim, paddle.nn.CrossEntropyLoss(), Accuracy(topk=(1, 5))) checkpoint_dir = os.path.join( FLAGS.output_dir, "checkpoint", FLAGS.arch + "_checkpoint", time.strftime('%Y-%m-%d-%H-%M', time.localtime())) model.fit(train_dataset, val_dataset, batch_size=FLAGS.batch_size, epochs=FLAGS.epoch, save_dir=checkpoint_dir, num_workers=FLAGS.num_workers) if FLAGS.enable_quant: quant_output_dir = os.path.join(FLAGS.output_dir, "quant_dygraph", FLAGS.arch, "int8_infer") input_spec = paddle.static.InputSpec( shape=[None, 3, 224, 224], dtype='float32') dygraph_qat.save_quantized_model(model.network, quant_output_dir, [input_spec]) print("Save quantized inference model in " + quant_output_dir) if __name__ == '__main__': parser = argparse.ArgumentParser("Training on ImageNet") # model parser.add_argument( "--arch", type=str, default='mobilenet_v1', help="model arch") parser.add_argument( "--output_dir", type=str, default='output', help="output dir") # data parser.add_argument( '--data', default="", help='path to dataset (should have subdirectories named "train" and "val"' ) # train parser.add_argument("--epoch", default=1, type=int, help="number of epoch") parser.add_argument("--batch_size", default=10, type=int, help="batch size") parser.add_argument( "--num_workers", default=2, type=int, help="dataloader workers") parser.add_argument( '--lr', default=0.0001, type=float, help='initial learning rate') parser.add_argument( "--weight-decay", default=1e-4, type=float, help="weight decay") # quant parser.add_argument( "--enable_quant", action='store_true', help="enable quant model") parser.add_argument("--use_pact", action='store_true', help="use pact") FLAGS = parser.parse_args() main()