# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle.fluid as fluid from layers import conv_bn_layer from paddleslim.prune import StaticPruningCollections from static_case import StaticCase class TestPrune(StaticCase): def test_prune(self): main_program = fluid.Program() startup_program = fluid.Program() # X X O X O # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6 # | ^ | ^ # |____________| |____________________| # # X: prune output channels # O: prune input channels with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") collections = StaticPruningCollections( ["conv1_weights", "conv2_weights", "conv3_weights", "dummy"], main_program) params = set([ param.name for param in main_program.all_parameters() if "weights" in param.name ]) expected_groups = [[('conv1_weights', 0), ('conv2_weights', 1), ('conv2_weights', 0), ('conv3_weights', 1), ('conv4_weights', 0), ('conv5_weights', 1)], [('conv3_weights', 0), ('conv4_weights', 1)]] self.assertTrue(len(collections._collections) == len(expected_groups)) for _collected, _expected in zip(collections, expected_groups): for _info in _collected.all_pruning_details(): _name = _info.name _axis = _info.axis if _name in params: self.assertTrue((_name, _axis) in _expected) if __name__ == '__main__': unittest.main()