import logging import numpy as np import paddle from paddleslim.common import get_logger from .var_group import * from .pruning_plan import * from .filter_pruner import FilterPruner __all__ = ['FPGMFilterPruner'] _logger = get_logger(__name__, logging.INFO) class FPGMFilterPruner(FilterPruner): def __init__(self, model, inputs, sen_file=None): super(FPGMFilterPruner, self).__init__(model, inputs, sen_file=sen_file) def cal_mask(self, pruned_ratio, collection): var_name = collection.master_name pruned_axis = collection.master_axis value = collection.values[var_name] groups = 1 for _detail in collection.all_pruning_details(): assert (isinstance(_detail.axis, int)) if _detail.axis == 1: _groups = _detail.op.attr('groups') if _groups is not None and _groups > 1: groups = _groups break dist_sum_list = [] for out_i in range(value.shape[0]): dist_sum = self.get_distance_sum(value, out_i) dist_sum_list.append(dist_sum) scores = np.array(dist_sum_list) if groups > 1: scores = scores.reshape([groups, -1]) scores = np.mean(scores, axis=1) sorted_idx = scores.argsort() pruned_num = int(round(len(sorted_idx) * pruned_ratio)) pruned_idx = sorted_idx[:pruned_num] mask_shape = [value.shape[pruned_axis]] mask = np.ones(mask_shape, dtype="int32") if groups > 1: mask = mask.reshape([groups, -1]) mask[pruned_idx] = 0 return mask.reshape(mask_shape) def get_distance_sum(self, value, out_idx): w = value.view() w.shape = value.shape[0], np.product(value.shape[1:]) selected_filter = np.tile(w[out_idx], (w.shape[0], 1)) x = w - selected_filter x = np.sqrt(np.sum(x * x, -1)) return x.sum()