在线量化示例#
本示例介绍如何使用在线量化接口,来对训练好的分类模型进行量化, 可以减少模型的存储空间和显存占用。
接口介绍#
请参考 量化API文档。
分类模型的离线量化流程#
1. 配置量化参数#
1 2 3 4 5 6 7 8 9 10 11 12 | quant_config = { 'weight_quantize_type': 'abs_max', 'activation_quantize_type': 'moving_average_abs_max', 'weight_bits': 8, 'activation_bits': 8, 'not_quant_pattern': ['skip_quant'], 'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'], 'dtype': 'int8', 'window_size': 10000, 'moving_rate': 0.9, 'quant_weight_only': False } |
2. 对训练和测试program插入可训练量化op#
1 2 3 | val_program = quant_aware(val_program, place, quant_config, scope=None, for_test=True) compiled_train_prog = quant_aware(train_prog, place, quant_config, scope=None, for_test=False) |
3.关掉指定build策略#
1 2 3 4 5 6 7 8 | build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_reduce_ops = False build_strategy.sync_batch_norm = False exec_strategy = fluid.ExecutionStrategy() compiled_train_prog = compiled_train_prog.with_data_parallel( loss_name=avg_cost.name, build_strategy=build_strategy, exec_strategy=exec_strategy) |
4. freeze program#
1 2 3 4 5 | float_program, int8_program = convert(val_program, place, quant_config, scope=None, save_int8=True) |
5.保存预测模型#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | fluid.io.save_inference_model( dirname=float_path, feeded_var_names=[image.name], target_vars=[out], executor=exe, main_program=float_program, model_filename=float_path + '/model', params_filename=float_path + '/params') fluid.io.save_inference_model( dirname=int8_path, feeded_var_names=[image.name], target_vars=[out], executor=exe, main_program=int8_program, model_filename=int8_path + '/model', params_filename=int8_path + '/params') |