# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import unittest import paddle import tempfile from paddle.vision.models import resnet18 from paddle.quantization import QuantConfig from paddle.quantization import PTQ from paddleslim.quant.observers import HistObserver, KLObserver, EMDObserver, MSEObserver, AVGObserver from paddleslim.quant.observers.hist import PercentHistObserverLayer from paddleslim.quant.observers.kl import KLObserverLayer from paddleslim.quant.observers.mse import MSEObserverLayer from paddleslim.quant.observers.avg import AVGObserverLayer from paddleslim.quant.observers.emd import EMDObserverLayer from paddle.nn.quant.format import LinearDequanter, LinearQuanter class TestPTQWithObservers(unittest.TestCase): def __init__(self, observer, observer_type, *args, **kvargs): super(TestPTQWithObservers, self).__init__(*args, **kvargs) self.observer = observer self.observer_type = observer_type def setUp(self): paddle.set_device("cpu") self.init_case() self.dummy_input = paddle.rand([1, 3, 224, 224]) self.temp_dir = tempfile.TemporaryDirectory(dir="./") self.path = os.path.join(self.temp_dir.name, 'qat') def tearDown(self): self.temp_dir.cleanup() def runTest(self): self.test_quantize() self.test_convert() def init_case(self): self.q_config = QuantConfig(activation=None, weight=None) self.q_config.add_type_config( paddle.nn.Conv2D, activation=self.observer, weight=self.observer) def _count_layers(self, model, layer_type): count = 0 for _layer in model.sublayers(True): if isinstance(_layer, layer_type): count += 1 return count def test_quantize(self): model = resnet18() conv_count = self._count_layers(model, paddle.nn.Conv2D) ptq = PTQ(self.q_config) model.eval() quant_model = ptq.quantize(model, inplace=False) out = quant_model(self.dummy_input) quantizer_cnt = self._count_layers(quant_model, self.observer_type) self.assertEqual(quantizer_cnt, 2 * conv_count) def test_convert(self): model = resnet18() conv_count = self._count_layers(model, paddle.nn.Conv2D) ptq = PTQ(self.q_config) model.eval() quant_model = ptq.quantize(model, inplace=False) out = quant_model(self.dummy_input) converted_model = ptq.convert(quant_model, inplace=False) # check count of LinearQuanter and LinearDequanter in dygraph quantizer_count_in_dygraph = self._count_layers(converted_model, LinearQuanter) dequantizer_count_in_dygraph = self._count_layers( converted_model, LinearDequanter) self.assertEqual(quantizer_count_in_dygraph, conv_count) self.assertEqual(dequantizer_count_in_dygraph, conv_count * 2) observer_suite = unittest.TestSuite() observer_suite.addTest( TestPTQWithObservers( observer=HistObserver(), observer_type=PercentHistObserverLayer)) observer_suite.addTest( TestPTQWithObservers( observer=KLObserver(bins_count=256, upsample_bins_count=32), observer_type=KLObserverLayer)) observer_suite.addTest( TestPTQWithObservers( observer=EMDObserver(), observer_type=EMDObserverLayer)) observer_suite.addTest( TestPTQWithObservers( observer=MSEObserver(), observer_type=MSEObserverLayer)) observer_suite.addTest( TestPTQWithObservers( observer=AVGObserver(), observer_type=AVGObserverLayer)) if __name__ == '__main__': runner = unittest.TextTestRunner(verbosity=2) runner.run(observer_suite)