FLOPs#
- paddleslim.analysis.flops(program, detail=False) 源代码
-
获得指定网络的浮点运算次数(FLOPs)。
参数:
-
program(paddle.fluid.Program) - 待分析的目标网络。更多关于Program的介绍请参考:Program概念介绍。
-
detail(bool) - 是否返回每个卷积层的FLOPs。默认为False。
-
only_conv(bool) - 如果设置为True,则仅计算卷积层和全连接层的FLOPs,即浮点数的乘加(multiplication-adds)操作次数。如果设置为False,则也会计算卷积和全连接层之外的操作的FLOPs。
返回值:
-
flops(float) - 整个网络的FLOPs。
-
params2flops(dict) - 每层卷积对应的FLOPs,其中key为卷积层参数名称,value为FLOPs值。
示例:
import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddleslim.analysis import flops def conv_bn_layer(input, num_filters, filter_size, name, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False, name=name + "_out") bn_name = name + "_bn" return fluid.layers.batch_norm( input=conv, act=act, name=bn_name + '_output', param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', ) main_program = fluid.Program() startup_program = fluid.Program() # X X O X O # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6 # | ^ | ^ # |____________| |____________________| # # X: prune output channels # O: prune input channels with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") conv6 = conv_bn_layer(conv5, 8, 3, "conv6") print("FLOPs: {}".format(flops(main_program)))
model_size#
paddleslim.analysis.model_size(program) 源代码
获得指定网络的参数数量。
参数:
- program(paddle.fluid.Program) - 待分析的目标网络。更多关于Program的介绍请参考:Program概念介绍。
返回值:
- model_size(int) - 整个网络的参数数量。
示例:
import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddleslim.analysis import model_size def conv_layer(input, num_filters, filter_size, name, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False, name=name + "_out") return conv main_program = fluid.Program() startup_program = fluid.Program() # X X O X O # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6 # | ^ | ^ # |____________| |____________________| # # X: prune output channels # O: prune input channels with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 16, 16]) conv1 = conv_layer(input, 8, 3, "conv1") conv2 = conv_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_layer(sum1, 8, 3, "conv3") conv4 = conv_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_layer(sum2, 8, 3, "conv5") conv6 = conv_layer(conv5, 8, 3, "conv6") print("FLOPs: {}".format(model_size(main_program)))
TableLatencyEvaluator#
- paddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=",") 源代码
-
基于硬件延时表的模型延时评估器。
参数:
-
table_file(str) - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:PaddleSlim硬件延时评估表格式
-
delimiter(str) - 硬件延时评估表中,操作信息之前所使用的分割符,默认为英文字符逗号。
返回值:
- Evaluator - 硬件延时评估器的实例。
- paddleslim.analysis.TableLatencyEvaluator.latency(graph) 源代码
-
获得指定网络的预估延时。
参数:
- graph(Program) - 待预估的目标网络。
返回值:
- latency - 目标网络的预估延时。