# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle.fluid as fluid from paddleslim.dist import merge, soft_label_loss from layers import conv_bn_layer from static_case import StaticCase class TestSoftLabelLoss(StaticCase): def test_soft_label_loss(self): student_main = fluid.Program() student_startup = fluid.Program() with fluid.program_guard(student_main, student_startup): input = fluid.data(name="image", shape=[None, 3, 224, 224]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") student_predict = conv1 + conv2 teacher_main = fluid.Program() teacher_startup = fluid.Program() with fluid.program_guard(teacher_main, teacher_startup): input = fluid.data(name="image", shape=[None, 3, 224, 224]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 conv5 = conv_bn_layer(sum2, 8, 3, "conv5") teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6") place = fluid.CPUPlace() data_name_map = {'image': 'image'} merge(teacher_main, student_main, data_name_map, place) merged_ops = [] for block in student_main.blocks: for op in block.ops: merged_ops.append(op.type) with fluid.program_guard(student_main): distill_loss = soft_label_loss('teacher_conv6_bn_output.tmp_2', 'conv2_bn_output.tmp_2', student_main) loss_ops = [] for block in student_main.blocks: for op in block.ops: loss_ops.append(op.type) self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set()) self.assertTrue( set(loss_ops).difference(set(merged_ops)) == {'cross_entropy', 'softmax', 'reduce_mean', 'scale'}) if __name__ == '__main__': unittest.main()