# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle import paddle.fluid as fluid from paddleslim.quant import quant_post_static from static_case import StaticCase sys.path.append("../demo") from models import MobileNet from layers import conv_bn_layer import paddle.dataset.mnist as reader from paddle.fluid.framework import IrGraph from paddle.fluid import core import numpy as np class TestQuantAwareCase1(StaticCase): def test_accuracy(self): image = fluid.layers.data( name='image', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') model = MobileNet() out = model.net(input=image, class_dim=10) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) optimizer = fluid.optimizer.Momentum( momentum=0.9, learning_rate=0.01, regularization=fluid.regularizer.L2Decay(4e-5)) optimizer.minimize(avg_cost) main_prog = fluid.default_main_program() val_prog = main_prog.clone(for_test=True) place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) feeder = fluid.DataFeeder([image, label], place, program=main_prog) train_reader = paddle.fluid.io.batch( paddle.dataset.mnist.train(), batch_size=64) eval_reader = paddle.fluid.io.batch( paddle.dataset.mnist.test(), batch_size=64) def train(program): iter = 0 for data in train_reader(): cost, top1, top5 = exe.run( program, feed=feeder.feed(data), fetch_list=[avg_cost, acc_top1, acc_top5]) iter += 1 if iter % 100 == 0: print( 'train iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'. format(iter, cost, top1, top5)) def test(program, outputs=[avg_cost, acc_top1, acc_top5]): iter = 0 result = [[], [], []] for data in train_reader(): cost, top1, top5 = exe.run(program, feed=feeder.feed(data), fetch_list=outputs) iter += 1 if iter % 100 == 0: print('eval iter={}, avg loss {}, acc_top1 {}, acc_top5 {}'. format(iter, cost, top1, top5)) result[0].append(cost) result[1].append(top1) result[2].append(top5) print(' avg loss {}, acc_top1 {}, acc_top5 {}'.format( np.mean(result[0]), np.mean(result[1]), np.mean(result[2]))) return np.mean(result[1]), np.mean(result[2]) train(main_prog) top1_1, top5_1 = test(val_prog) fluid.io.save_inference_model( dirname='./test_quant_post', feeded_var_names=[image.name, label.name], target_vars=[avg_cost, acc_top1, acc_top5], main_program=val_prog, executor=exe, model_filename='model', params_filename='params') quant_post_static( exe, './test_quant_post', './test_quant_post_inference', sample_generator=paddle.dataset.mnist.test(), model_filename='model', params_filename='params', batch_nums=10) quant_post_prog, feed_target_names, fetch_targets = fluid.io.load_inference_model( dirname='./test_quant_post_inference', executor=exe, model_filename='__model__', params_filename='__params__') top1_2, top5_2 = test(quant_post_prog, fetch_targets) print("before quantization: top1: {}, top5: {}".format(top1_1, top5_1)) print("after quantization: top1: {}, top5: {}".format(top1_2, top5_2)) if __name__ == '__main__': unittest.main()