# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import unittest import paddle.fluid as fluid from paddleslim.prune import Pruner from paddleslim.core import GraphWrapper from paddleslim.prune import conv2d as conv2d_walker from layers import conv_bn_layer class TestPrune(unittest.TestCase): def test_prune(self): main_program = fluid.Program() startup_program = fluid.Program() # X X O X O # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->align_out-->conv5 # | ^ | ^ | # |____________| |____________________| ->gather_out-->conv6 # | # ->lodset_out-->conv7 # # X: prune output channels # O: prune input channels with fluid.program_guard(main_program, startup_program): input = fluid.data(name="image", shape=[None, 3, 64, 64]) conv1 = conv_bn_layer(input, 8, 3, "conv1") conv2 = conv_bn_layer(conv1, 8, 3, "conv2") sum1 = conv1 + conv2 conv3 = conv_bn_layer(sum1, 8, 3, "conv3") conv4 = conv_bn_layer(conv3, 8, 3, "conv4") sum2 = conv4 + sum1 #test roi_align rois = fluid.data( name='rois', shape=[None, 4], dtype='float32') align_out = fluid.layers.roi_align(input=sum2, rois=rois, pooled_height=7, pooled_width=7, spatial_scale=0.5, sampling_ratio=-1) conv5 = conv_bn_layer(align_out, 8, 3, "conv5") #test gather index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32') gather_out = fluid.layers.gather(sum2, index) conv6 = conv_bn_layer(gather_out, 8, 3, "conv6") #test lod_reset y = fluid.layers.data(name='y', shape=[6], lod_level=2) lodset_out = fluid.layers.lod_reset(x=sum2, y=y) conv7 = conv_bn_layer(lodset_out, 8, 3, "conv7") shapes = {} for param in main_program.global_block().all_parameters(): shapes[param.name] = param.shape place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() exe.run(startup_program, scope=scope) graph = GraphWrapper(main_program) conv_op = graph.var("conv4_weights").outputs()[0] walker = conv2d_walker(conv_op, []) walker.prune(graph.var("conv4_weights"), pruned_axis=0, pruned_idx=[]) print(walker.pruned_params) if __name__ == '__main__': unittest.main()