# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse import functools from functools import partial import math import numpy as np import paddle import paddle.nn as nn from paddle.io import DataLoader from imagenet_reader import ImageNetDataset from paddleslim.common import load_config as load_slim_config from paddleslim.auto_compression import AutoCompression def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--save_dir', type=str, default='output', help="directory to save compressed model.") parser.add_argument( '--total_images', type=int, default=1281167, help="the number of total training images.") parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") return parser # yapf: enable def reader_wrapper(reader, input_name): def gen(): for i, (imgs, label) in enumerate(reader()): yield {input_name: imgs} return gen def eval_reader(data_dir, batch_size, crop_size, resize_size, place=None): val_reader = ImageNetDataset( mode='val', data_dir=data_dir, crop_size=crop_size, resize_size=resize_size) val_loader = DataLoader( val_reader, places=[place] if place is not None else None, batch_size=global_config['batch_size'], shuffle=False, drop_last=False, num_workers=0) return val_loader def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): val_loader = eval_reader( data_dir, batch_size=global_config['batch_size'], crop_size=img_size, resize_size=resize_size) results = [] print('Evaluating...') for batch_id, (image, label) in enumerate(val_loader): # top1_acc, top5_acc if len(test_feed_names) == 1: image = np.array(image) label = np.array(label).astype('int64') pred = exe.run(compiled_test_program, feed={test_feed_names[0]: image}, fetch_list=test_fetch_list) pred = np.array(pred[0]) label = np.array(label) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = float(acc_num) / len(label) results.append([top_1, top_5]) else: # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy image = np.array(image) label = np.array(label).astype('int64') result = exe.run( compiled_test_program, feed={test_feed_names[0]: image, test_feed_names[1]: label}, fetch_list=test_fetch_list) result = [np.mean(r) for r in result] results.append(result) if batch_id % 100 == 0: print('Eval iter: ', batch_id) result = np.mean(np.array(results), axis=0) return result[0] def main(): rank_id = paddle.distributed.get_rank() if args.devices == 'gpu': place = paddle.CUDAPlace(rank_id) paddle.set_device('gpu') else: place = paddle.CPUPlace() paddle.set_device('cpu') global global_config all_config = load_slim_config(args.config_path) assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}" global_config = all_config["Global"] gpu_num = paddle.distributed.get_world_size() if isinstance(all_config['TrainConfig']['learning_rate'], dict) and all_config['TrainConfig']['learning_rate'][ 'type'] == 'CosineAnnealingDecay': step = int( math.ceil( float(args.total_images) / (global_config['batch_size'] * gpu_num))) all_config['TrainConfig']['learning_rate']['T_max'] = step print('total training steps:', step) global data_dir data_dir = global_config['data_dir'] global img_size, resize_size img_size = global_config['img_size'] if 'img_size' in global_config else 224 resize_size = global_config[ 'resize_size'] if 'resize_size' in global_config else 256 train_dataset = ImageNetDataset( mode='train', data_dir=data_dir, crop_size=img_size, resize_size=resize_size) train_loader = DataLoader( train_dataset, places=[place], batch_size=global_config['batch_size'], shuffle=True, drop_last=True, num_workers=0) train_dataloader = reader_wrapper(train_loader, global_config['input_name']) ac = AutoCompression( model_dir=global_config['model_dir'], model_filename=global_config['model_filename'], params_filename=global_config['params_filename'], save_dir=args.save_dir, config=all_config, train_dataloader=train_dataloader, eval_callback=eval_function if rank_id == 0 else None, eval_dataloader=reader_wrapper( eval_reader( data_dir, global_config['batch_size'], crop_size=img_size, resize_size=resize_size, place=place), global_config['input_name'])) ac.compress() if __name__ == '__main__': paddle.enable_static() parser = argsparser() args = parser.parse_args() main()