图像分类模型量化训练-快速开始

该教程以图像分类模型MobileNetV1为例,说明如何快速使用PaddleSlim的量化训练接口。 该示例包含以下步骤:

  1. 导入依赖
  2. 构建模型
  3. 训练模型
  4. 量化
  5. 训练和测试量化后的模型
  6. 保存量化后的模型

1. 导入依赖

PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:

import paddle
import paddle.fluid as fluid
import paddleslim as slim
import numpy as np

2. 构建网络

该章节构造一个用于对MNIST数据进行分类的分类模型,选用MobileNetV1,并将输入大小设置为[1, 28, 28],输出类别数为10。 为了方便展示示例,我们在paddleslim.models下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:

注意:paddleslim.models下的API并非PaddleSlim常规API,是为了简化示例而封装预定义的一系列方法,比如:模型结构的定义、Program的构建等。
exe, train_program, val_program, inputs, outputs = \
    slim.models.image_classification("MobileNet", [1, 28, 28], 10, use_gpu=True)

3. 训练模型

该章节介绍了如何定义输入数据和如何训练和测试分类模型。先训练分类模型的原因是量化训练过程是在训练好的模型上进行的,也就是说是在训练好的模型的基础上加入量化反量化op之后,用小学习率进行参数微调。

3.1 定义输入数据

为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的paddle.dataset.mnist包定义了MNIST数据的下载和读取。 代码如下:

import paddle.dataset.mnist as reader
train_reader = paddle.batch(
        reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch(
        reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())

3.2 训练和测试

先定义训练和测试函数,正常训练和量化训练时只需要调用函数即可。在训练函数中执行了一个epoch的训练,因为MNIST数据集数据较少,一个epoch就可将top1精度训练到95%以上。

def train(prog):
    iter = 0
    for data in train_reader():
        acc1, acc5, loss = exe.run(prog, feed=train_feeder.feed(data), fetch_list=outputs)
        if iter % 100 == 0:
            print('train iter={}, top1={}, top5={}, loss={}'.format(iter, acc1.mean(), acc5.mean(), loss.mean()))
        iter += 1
        
def test(prog):
    iter = 0
    res = [[], []]
    for data in train_reader():
        acc1, acc5, loss = exe.run(prog, feed=train_feeder.feed(data), fetch_list=outputs)
        if iter % 100 == 0:
            print('test iter={}, top1={}, top5={}, loss={}'.format(iter, acc1.mean(), acc5.mean(), loss.mean()))
        res[0].append(acc1.mean())
        res[1].append(acc5.mean())
        iter += 1
    print('final test result top1={}, top5={}'.format(np.array(res[0]).mean(), np.array(res[1]).mean()))

调用train函数训练分类网络,train_program是在第2步:构建网络中定义的。

train(train_program)

调用test函数测试分类网络,val_program是在第2步:构建网络中定义的。

test(val_program)

4. 量化

按照默认配置train_programval_program中加入量化和反量化op.

quant_program = slim.quant.quant_aware(train_program, exe.place, for_test=False)
val_quant_program = slim.quant.quant_aware(val_program, exe.place, for_test=True)

5. 训练和测试量化后的模型

微调量化后的模型,训练一个epoch后测试。

train(quant_program)

测试量化后的模型,和3.2 训练和测试中得到的测试结果相比,精度相近,达到了无损量化。

test(val_quant_program)

6. 保存量化后的模型

4. 量化中使用接口slim.quant.quant_aware接口得到的模型只适合训练时使用,为了得到最终使用时的模型,需要使用slim.quant.convert接口,然后使用fluid.io.save_inference_model保存模型。float_prog的参数数据类型是float32,但是数据范围是int8, 保存之后可使用fluid或者paddle-lite加载使用,paddle-lite在使用时,会先将类型转换为int8。int8_prog的参数数据类型是int8, 保存后可看到量化后模型大小,不可加载使用。

float_prog, int8_prog = slim.quant.convert(val_quant_program, exe.place, save_int8=True)
target_vars = [float_prog.global_block().var(name) for name in outputs]
fluid.io.save_inference_model(dirname='./inference_model/float',
        feeded_var_names=[var.name for var in inputs],
        target_vars=target_vars,
        executor=exe,
        main_program=float_prog)
fluid.io.save_inference_model(dirname='./inference_model/int8',
        feeded_var_names=[var.name for var in inputs],
        target_vars=target_vars,
        executor=exe,
        main_program=int8_prog)