import os import sys sys.path[0] = os.path.join(os.path.dirname("__file__"), os.path.pardir) import argparse import functools from functools import partial import numpy as np import paddle import paddle.nn as nn from paddle.io import Dataset, BatchSampler, DataLoader import imagenet_reader as reader from paddleslim.auto_compression.config_helpers import load_config from paddleslim.auto_compression import AutoCompression from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('model_dir', str, None, "inference model directory.") add_arg('model_filename', str, None, "inference model filename.") add_arg('params_filename', str, None, "inference params filename.") add_arg('save_dir', str, None, "directory to save compressed model.") add_arg('batch_size', int, 1, "train batch size.") add_arg('config_path', str, None, "path of compression strategy config.") add_arg('data_dir', str, None, "path of dataset") # yapf: enable def reader_wrapper(reader): def gen(): for i, data in enumerate(reader()): imgs = np.float32([item[0] for item in data]) yield {"x": imgs} return gen def eval_reader(data_dir, batch_size): val_reader = paddle.batch( reader.val(data_dir=data_dir), batch_size=batch_size) return val_reader def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): val_reader = eval_reader(data_dir, batch_size=1) image = paddle.static.data( name='x', shape=[None, 3, 224, 224], dtype='float32') label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') results = [] for batch_id, data in enumerate(val_reader()): # top1_acc, top5_acc if len(test_feed_names) == 1: image = data[0][0].reshape((1, 3, 224, 224)) label = [[d[1]] for d in data] pred = exe.run(compiled_test_program, feed={test_feed_names[0]: image}, fetch_list=test_fetch_list) pred = np.array(pred[0]) label = np.array(label) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = float(acc_num) / len(label) results.append([top_1, top_5]) else: # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy image = data[0][0].reshape((1, 3, 224, 224)) label = [[d[1]] for d in data] result = exe.run( compiled_test_program, feed={test_feed_names[0]: image, test_feed_names[1]: label}, fetch_list=test_fetch_list) result = [np.mean(r) for r in result] results.append(result) if batch_id % 5000 == 0: print('Eval iter: ', batch_id) result = np.mean(np.array(results), axis=0) return result[0] if __name__ == '__main__': args = parser.parse_args() print_arguments(args) paddle.enable_static() compress_config, train_config = load_config(args.config_path) data_dir = args.data_dir train_reader = paddle.batch( reader.train(data_dir=data_dir), batch_size=args.batch_size) train_dataloader = reader_wrapper(train_reader) ac = AutoCompression( model_dir=args.model_dir, model_filename=args.model_filename, params_filename=args.params_filename, save_dir=args.save_dir, strategy_config=compress_config, train_config=train_config, train_dataloader=train_dataloader, eval_callback=eval_function, eval_dataloader=reader_wrapper(eval_reader(data_dir, 64))) ac.compress()