# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import paddle import numpy as np import math from paddle.framework import ParamAttr from paddle.nn import Layer from paddle.nn.initializer import Constant from paddle.utils import unique_name from paddle.quantization.factory import QuanterFactory from paddle.quantization.base_quanter import BaseQuanter class PACTQuanter(QuanterFactory): r""" PArameterized Clipping acTivation(PACT) uses an activation clipping parameter alpha to find the right quantization scale. More details can be found in https://arxiv.org/pdf/1805.06085.pdf. Args: quanter(BaseQuanter, required): It can be any BaseQuanter. PACT can be used with any other quantization method. init_value(float, optional): Value of initial alpha. Default 100 learning_rate(float, optional): The learning rate of alpha when optimizing. dtype(str): Trainable data type. name(str): The name of the layer. Examples: .. code-block:: python from paddle.quantization import QuantConfig from paddle.quantization.quanters import PACTQuanter from paddle.quantization.quanters.abs_max import FakeQuanterWithAbsMaxObserverLayer pact_quanter = PACTQuanter(quanter=FakeQuanterWithAbsMaxObserverLayer) q_config = QuantConfig(activation=pact_quanter, weight=pact_quanter) """ def __init__(self, quanter, init_value=100., learning_rate=1000., dtype='float32', name=None): super(PACTQuanter, self).__init__( quanter=quanter, init_value=init_value, learning_rate=learning_rate, dtype=dtype, name=name) def _get_class(self): return PACTQuanterLayer class PACTQuanterLayer(BaseQuanter): def __init__(self, layer, quanter, init_value=1000, learning_rate=1000., dtype='float32', name=None): super(PACTQuanterLayer, self).__init__() self.quanter = quanter(layer) alpha_prefix = ("{}.pact".format(name) if name else 'quant_dequant.pact') name = unique_name.generate(alpha_prefix) alpha_attr = paddle.ParamAttr( name=name, initializer=paddle.nn.initializer.Constant(value=init_value), learning_rate=learning_rate) self.alpha = self.create_parameter( shape=[1], attr=alpha_attr, dtype=dtype) def forward(self, activation): out_left = paddle.nn.functional.relu(activation - self.alpha) out_right = paddle.nn.functional.relu(-self.alpha - activation) activation = activation - out_left + out_right return self.quanter(activation) def bit_length(self): """ Return the bit length of quantized data. """ return self.quanter.bit_length() def quant_axis(self): """ Return quantization axis. """ return self.quanter.quant_axis() def scales(self): """ Return output scales. """ return self.quanter.scales() def zero_points(self): """ Return output zero points. """ return self.quanter.zero_points()