# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path[0] = os.path.join( os.path.dirname("__file__"), os.path.pardir, os.path.pardir) import argparse import functools from functools import partial import math import numpy as np import paddle import paddle.nn as nn from paddle.io import DataLoader from imagenet_reader import ImageNetDataset from paddleslim.auto_compression.config_helpers import load_config as load_slim_config from paddleslim.auto_compression import AutoCompression def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--save_dir', type=str, default='output', help="directory to save compressed model.") parser.add_argument( '--total_images', type=int, default=1281167, help="the number of total training images.") return parser # yapf: enable def reader_wrapper(reader, input_name): def gen(): for i, (imgs, label) in enumerate(reader()): yield {input_name: imgs} return gen def eval_reader(data_dir, batch_size, crop_size, resize_size): val_reader = ImageNetDataset( mode='val', data_dir=data_dir, crop_size=crop_size, resize_size=resize_size) val_loader = DataLoader( val_reader, batch_size=global_config['batch_size'], shuffle=False, drop_last=False, num_workers=0) return val_loader def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): val_loader = eval_reader( data_dir, batch_size=global_config['batch_size'], crop_size=img_size, resize_size=resize_size) results = [] print('Evaluating...') for batch_id, (image, label) in enumerate(val_loader): # top1_acc, top5_acc if len(test_feed_names) == 1: image = np.array(image) label = np.array(label).astype('int64') pred = exe.run(compiled_test_program, feed={test_feed_names[0]: image}, fetch_list=test_fetch_list) pred = np.array(pred[0]) label = np.array(label) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = float(acc_num) / len(label) results.append([top_1, top_5]) else: # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy image = np.array(image) label = np.array(label).astype('int64') result = exe.run( compiled_test_program, feed={test_feed_names[0]: image, test_feed_names[1]: label}, fetch_list=test_fetch_list) result = [np.mean(r) for r in result] results.append(result) if batch_id % 100 == 0: print('Eval iter: ', batch_id) result = np.mean(np.array(results), axis=0) return result[0] def main(): global global_config all_config = load_slim_config(args.config_path) assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}" global_config = all_config["Global"] gpu_num = paddle.distributed.get_world_size() if isinstance(all_config['TrainConfig']['learning_rate'], dict) and all_config['TrainConfig']['learning_rate'][ 'type'] == 'CosineAnnealingDecay': step = int( math.ceil( float(args.total_images) / (global_config['batch_size'] * gpu_num))) all_config['TrainConfig']['learning_rate']['T_max'] = step print('total training steps:', step) global data_dir data_dir = global_config['data_dir'] global img_size, resize_size img_size = global_config['img_size'] if 'img_size' in global_config else 224 resize_size = global_config[ 'resize_size'] if 'resize_size' in global_config else 256 train_dataset = ImageNetDataset( mode='train', data_dir=data_dir, crop_size=img_size, resize_size=resize_size) train_loader = DataLoader( train_dataset, batch_size=global_config['batch_size'], shuffle=True, drop_last=True, num_workers=0) train_dataloader = reader_wrapper(train_loader, global_config['input_name']) ac = AutoCompression( model_dir=global_config['model_dir'], model_filename=global_config['model_filename'], params_filename=global_config['params_filename'], save_dir=args.save_dir, config=all_config, train_dataloader=train_dataloader, eval_callback=eval_function, eval_dataloader=reader_wrapper( eval_reader( data_dir, global_config['batch_size'], crop_size=img_size, resize_size=resize_size), global_config['input_name'])) ac.compress() if __name__ == '__main__': paddle.enable_static() parser = argsparser() args = parser.parse_args() main()