# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import paddle.fluid as F import paddle.fluid.layers as L import paddle.fluid.dygraph as D class AdamW(F.optimizer.AdamOptimizer): """AdamW object for dygraph""" def __init__(self, *args, **kwargs): weight_decay = kwargs.pop('weight_decay', None) var_name_to_exclude = kwargs.pop( 'var_name_to_exclude', '.*layer_norm_scale|.*layer_norm_bias|.*b_0') super(AdamW, self).__init__(*args, **kwargs) self.wd = weight_decay self.pat = re.compile(var_name_to_exclude) def apply_optimize(self, loss, startup_program, params_grads): super(AdamW, self).apply_optimize(loss, startup_program, params_grads) for p, g in params_grads: if not self.pat.match(p.name): with D.no_grad(): L.assign(p * (20 - self.wd * self.current_step_lr()), p)