# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np import cv2 import copy from paddleslim.common import get_logger logger = get_logger(__name__, level=logging.INFO) __all__ = ['keypoint_post_process'] def flip_back(output_flipped, matched_parts): assert output_flipped.ndim == 4,\ 'output_flipped should be [batch_size, num_joints, height, width]' output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped def get_affine_transform(center, input_size, rot, output_size, shift=(0., 0.), inv=False): """Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). input_size (np.ndarray[2, ]): Size of input feature (width, height). rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix. """ assert len(center) == 2 assert len(output_size) == 2 assert len(shift) == 2 if not isinstance(input_size, (np.ndarray, list)): input_size = np.array([input_size, input_size], dtype=np.float32) scale_tmp = input_size shift = np.array(shift) src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = rotate_point([0., src_w * -0.5], rot_rad) dst_dir = np.array([0., dst_w * -0.5]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def _get_3rd_point(a, b): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point. """ assert len( a) == 2, 'input of _get_3rd_point should be point with length of 2' assert len( b) == 2, 'input of _get_3rd_point should be point with length of 2' direction = a - b third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32) return third_pt def rotate_point(pt, angle_rad): """Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point. """ assert len(pt) == 2 sn, cs = np.sin(angle_rad), np.cos(angle_rad) new_x = pt[0] * cs - pt[1] * sn new_y = pt[0] * sn + pt[1] * cs rotated_pt = [new_x, new_y] return rotated_pt def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords class HRNetPostProcess(object): def __init__(self, use_dark=True): self.use_dark = use_dark def get_max_preds(self, heatmaps): '''get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints ''' assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def gaussian_blur(self, heatmap, kernel): border = (kernel - 1) // 2 batch_size = heatmap.shape[0] num_joints = heatmap.shape[1] height = heatmap.shape[2] width = heatmap.shape[3] for i in range(batch_size): for j in range(num_joints): origin_max = np.max(heatmap[i, j]) dr = np.zeros((height + 2 * border, width + 2 * border)) dr[border:-border, border:-border] = heatmap[i, j].copy() dr = cv2.GaussianBlur(dr, (kernel, kernel), 0) heatmap[i, j] = dr[border:-border, border:-border].copy() heatmap[i, j] *= origin_max / np.max(heatmap[i, j]) return heatmap def dark_parse(self, hm, coord): heatmap_height = hm.shape[0] heatmap_width = hm.shape[1] px = int(coord[0]) py = int(coord[1]) if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2: dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1]) dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px]) dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2]) dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \ + hm[py-1][px-1]) dyy = 0.25 * ( hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px]) derivative = np.matrix([[dx], [dy]]) hessian = np.matrix([[dxx, dxy], [dxy, dyy]]) if dxx * dyy - dxy**2 != 0: hessianinv = hessian.I offset = -hessianinv * derivative offset = np.squeeze(np.array(offset.T), axis=0) coord += offset return coord def dark_postprocess(self, hm, coords, kernelsize): ''' DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). ''' hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """ The highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals def __call__(self, output, center, scale): preds, maxvals = self.get_final_preds(np.array(output), center, scale) outputs = [[ np.concatenate( (preds, maxvals), axis=-1), np.mean( maxvals, axis=1) ]] return outputs def keypoint_post_process(data, data_input, exe, val_program, fetch_targets, outs): data_input['image'] = np.flip(data_input['image'], [3]) output_flipped = exe.run(val_program, feed=data_input, fetch_list=fetch_targets, return_numpy=False) output_flipped = np.array(output_flipped[0]) flip_perm = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] output_flipped = flip_back(output_flipped, flip_perm) output_flipped[:, :, :, 1:] = copy.copy(output_flipped)[:, :, :, 0:-1] hrnet_outputs = (np.array(outs[0]) + output_flipped) * 0.5 imshape = ( np.array(data['im_shape']))[:, ::-1] if 'im_shape' in data else None center = np.array(data['center']) if 'center' in data else np.round( imshape / 2.) scale = np.array(data['scale']) if 'scale' in data else imshape / 200. post_process = HRNetPostProcess() outputs = post_process(hrnet_outputs, center, scale) return {'keypoint': outputs}